Problems in Image Localization

Karl Ni, karl_ni@llnl.gov
Lawrence Livermore National Laboratory

22 May 2013

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.
The Localization of an Image

- Image localization is the process of recovering the extrinsic camera parameters (e.g., angle, position) given a photograph

- **Platforms (viewing angle)**
 - Aerial
 - Ground
 - Underwater
 - Satellite

- **Modality & wavelength**
 - EO (Visible)
 - Infrared
 - SAR

- **Duplicity**
 - Collection of images
 - Continuous video
 - Single image

- **Degree of accuracy**
 - City-wide
 - Region-wide
 - Exact geo-coordinates
 - Pose understanding

- **Target of localization**
 - Image location
 - Features of image
Outline

• Fine Geo-registration
 – Collection of ground images
 – Collection of aerial images
 – Other modalities (underwater, satellite)
 – Single image / video frame

• Approximate localization through image content
 – Feature extraction
 – Learning multiple instances of a semantic concept
 – Automated feature segmentation
 – Classifying with learned segmentations
Registering a Collection of Photos

Registering a Collection of Photos

Aerial 3D Point Cloud Geo-registration

Other Modalities

- Satellite Imagery
- Underwater Imagery
2D Image Localization (Fine Georegistration)

Outline

- **Fine Geo-registration**
 - Collection of ground images
 - Collection of aerial images
 - Other modalities (underwater, satellite)
 - Single image / video frame

- **Approximate localization through image content**
 - Feature extraction
 - Learning multiple instances of a semantic concept
 - Automated feature segmentation
 - Classifying with learned segmentations
Localizing with *Image Content*

- **Problems with 3D model matching**
 - Don’t always have an a priori model
 - 3D models are expensive to build
 - Detection & registration rate is extremely low
 - Exact location is not always necessary

- **Content-based localization (data driven)**
 - Feature-based
 - Multiple instance learning-based

FEATURES ARE:
- More suburb-like
- Larger roads
- Drier vegetation
- Shorter houses

FEATURES ARE:
- Arches and white buildings
- Domes and ancient architecture
- Older/speckled materials
 (higher frequency image content)

FEATURES ARE:
- Red bricks on multiple buildings
- Small hedges, etc.
- Windows of a certain type
- Types of buildings are there

- **Challenges**
 - Invariance, noise, multiple instances, deformation
 - Abstraction - visual similarity does not always correlate with “semantic” similarity
Finding the right features

- Requires a good training set
- Tools to hand label concepts (2006-2011)
 - Google Image Labeler
 - Kobus’s Corel Dataset
 - MIT LabelMe
 - Yahoo! Games
- Problems
 - Tedious & time consuming
 - Inconsistent labeling
 - Errors
- Famous algorithms (e.g., face detection)
 - Parallelizable
 - Not generalizable (unfortunately)
 - False-alarm creep
 - Better to take a look holistically
 (Google Research, Ng et al)

Would like to pass in entire image for training & automatically learn high-level features
Object modeling without segmentation

- Conditional distribution modeling
- Learning multiple instances of an object (no noise case)
- Robustness to noise through law of large numbers
 - Hope to integrate it out
 - Although the area of red boxes per instance is small, their aggregate over all instances is dominant
- Results: automated semantic labeling & image segmentation:

Classifying with Automated Segmentation

Take learned & segmented concepts and apply to a semantic classifier

<table>
<thead>
<tr>
<th>Datasets</th>
<th>MIT-Kendall</th>
<th>Vienna</th>
<th>Dubrovnik</th>
<th>Lubbock</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT-Kendall</td>
<td>0.975</td>
<td>0.056</td>
<td>0.024</td>
<td>0.102</td>
</tr>
<tr>
<td>Vienna</td>
<td>0.050</td>
<td>0.896</td>
<td>0.035</td>
<td>0.060</td>
</tr>
<tr>
<td>Dubrovnik</td>
<td>0.015</td>
<td>0.024</td>
<td>0.905</td>
<td>0.057</td>
</tr>
<tr>
<td>Lubbock</td>
<td>0.097</td>
<td>0.002</td>
<td>0.053</td>
<td>0.901</td>
</tr>
</tbody>
</table>

Summary

• Image localization is a difficult problem with multiple dimensions:
 – Duplicity (collections of images, single photos, video)
 – Degree of accuracy (continent wide, city-wide, exact)
 – Modality (wavelength)
 – Viewing angles (under water, from the air, on the ground)

• Accurate modeling must occur before we have any hope in localizing images.

• Geo-registration of images
 – (With 3D) Quality of the training sets
 – (Using machine learning) Quantity of the training sets
References

Contributors and Acknowledgements

- MIT Lincoln Laboratory
 - Karl Ni
 - Nicholas Armstrong-Crews
 - Scott Sawyer
 - Nadya Bliss

- MIT
 - Katherine L. Bouman

- Boston University
 - Zachary Sun

- Northeastern University
 - Alexandru Vasile

- Cornell University
 - Noah Snavely
Questions?