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What is  the Minimum Support? 
• Note: true  
(original) support 
contains the  
minimum region 
 
• There exists a  
source in the  
minimum region 
that produces  
the field 
 
(sparsest solution) 
 
• Largest 2 norm of  
all sources that 
produce the field 
and lack nonrad. part 
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Solution essentially defines the ‘center’  
of a far field (is a ‘common denominator’). 
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Many Imaging and Shape 
Reconstruction Methods 

Gruber and Marengo, 
Reinterpretation and  
enhancement of signal  
subspace based methods  
for extended scatterers, 
SIAM J. Imag. Sciences, 
2010. 

Canonical correlation 

MUSIC for extended targets 
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Some Questions 

• Classical representation counterpart of the qualitative 
Imaging methods  

 
• Theoretical explanation of the observed robustness of  
the qualitative imaging methods, and the fundamental 
limits 
 
• Understanding of the limits of the limited data  
inverse source and scattering reconstructions  
(compressive sensing); single-transmit experiment 
 

 



Two Lines of Research 
• New methodology to estimate minimum source regions of far 

fields, and bounds for those regions.  

 

• Minimum convex source regions (subset of the convex hull) 

 

• Minimum source region which can be nonconvex 

 

• Minimum source regions of far fields (and their bounds) are 
probabilistically robust bounds for the true supports of 
sources and scatterers. 

 

• Signal subspace considerations give confidence intervals for 
the estimated minimum source or scatterer support. 
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*Multipole-based algorithms with linkages to backpropagation 

*Probabilistic understanding of observed inversion robustness 



Applications of Inverse Support 
Theory 

• Minimum source region of a far field is unique despite the 

nonuniqueness of  the inverse source problem. 

• Represents localization information contained in the far field. 

• Analytical formulas for closed-form field data offer rigor to 
the inverse support theory.  

• Constitutes part of a purely analytical approach to solve 
certain canonical inverse source and scattering problems, 
relevant to imaging and antenna theory. (noniterative: JASA, 
2006) 

• Computational version of the approach is an inversion 
method for, e.g., shape reconstruction. 

• Universality, due to reliance on a Picard test (e.g., inverse 
problems in optical coherence theory). 
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Literature and Contributions 

• Existence: Muller (1969); we demonstrate the algorithms. 

• Plane wave expansion closed-form approach: Yaghjian et al. 
(1997); we compute the multipole counterpart which expands 
class of problems tackled analytically. 

• Paley-Wiener theorem for the convex scattering support: 
Kusiak and Sylvester (2003); we extend to nonconvex part. 

• ‘Range test’ for practical application: Potthast et al. (2003). 
Picard test reinterpretation: Kusiak and Sylvester (2005); our 
convex and nonconvex support inversion approach is also a 
Picard test (defines class of realizable data in L2 constraint). 

• Existence of UWSC sets: Sylvester (2006); we demonstrate 
concrete examples of the UWSC sets (derived analytically).  

• Extension to backscattering (radar): Haddar et al. (2005). 
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Two Approaches 

• Radiation (maps of sources to fields) 
 
• Diffraction (maps of fields to fields) 

 
• They are found to be equivalent 

 
• Results in both 3D and 2D spaces. 
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Scalar Focus With Vector Extension 

• Scalar waves (Helmholtz) 

 

• The theory uses multipole expansions, and 
asymptotic properties of spherical Bessel 
functions. 

 

• Diffraction form of the theory holds also for 
the full vector (EM) case (or use vector 
multipole theory within the radiation form). 

Marengo 



The Helmholtz equation 
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Active source (emitter) or induced source (scatterer) 

(+ radiation condition) 



Green’s Function (3D) 
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which via addition theorem for the spherical Hankel function becomes 



Multipole Expansion 
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For this origin, source is contained in ball of radius R 

multipole moments 



Far Fields and Multipole Moments 
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In far zone, 

Linear projections 



Plane Wave Representation 
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K space (3D) 

|K|=k 

Information in Fourier Domain 

Field as 2D object in 3D space. 

Ewald sphere 
(2D) 
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Nonradiating components  
cannot be deduced:  
nonuniqueness 



Built-in Incoherence 

• Source-to-far-field mapping encodes information 
about the source in the form of:  
 

 projections of the source in a (Fourier 
    exponential) basis that is ideally incoherent 
    to the point-source or configuration space 
    representation for the source. 
 
• This mapping is an optimal form of compressive 

sensing. 
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Support is 3D, while far field info. Is 2D, yet it is in the form of an ideal projection 



Sparsest Representation 
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source 

Multipole Expansion 
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Smallest ball containing the  
source support 

1 



Radiated Power 
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From the large argument approximation of the spherical Hankel  
function 

so that due to orthonormality of the harmonics 

The radiated power is proportional to the far field L2 norm 
 



Inverse Source Problem 

Marengo 



Original Source and its Field 

Source that radiates 
the given far fields 

Far field radiation pattern 
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Minimum Source Region 

Marengo 



Relations 
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same field 
outside ball 
of radius R 



Minimum Energy Sources 

These sources are of the form (minimum L2 norm solution) 

Question: How small can this radius (‘a’) be? 
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(Note: for nontrivial field, minimum source region is nonempty) 



Asymptotic Behavior 
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Key difference between analytical versus computational 

   infinite                          finite 



Minimum Radius 

Picard condition 
which defines 
realizable fields. 

Diffraction counterpart: 

(less stringent; square-integrability of surface field versus of volume source)  

(+ uniform, 
absolute conv.) 
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(Alternative conditions for physical reasonableness are all equivalent to this.) 

Equivalent! 



Minimum Radius 
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It follows from the D’Alembert ratio test and the fact that  

that 

which gives Holds for both open and closed ROC 



Multiple Origins 
Intersection of the 
minimum spherical volumes 
gives a (convex) bounding  
region for the minimum  
source region. 
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Backpropagation 
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Min.  
region 

Convex 
hull 



Uncertainty Region 

Marengo 

~l 



“Interior Problem” Backpropagation 
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~l 



Nonconvex Part 

Marengo 



(Source-free) Multipole Expansion 
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Relations 

Marengo 



Forward Problem 
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Knows field for radius a, computes field for radius b<a 



Inverse Problem 
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Knows field for radius b<a, computes field for radius a 



Minimum Region Computation 
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Minimum convex region 

Known field 
representation 

Interior Problem 

Can inverse diffract, up to the boundary 
of the object or the minimum region. 

(Generally non-convex) 
minimum source region 
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Analytical Results 
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• Point sources 
 
• Radiating disk 
 
• Radiating ring 
 
Other related computations (plane wave theory):  
• Parallelpiped endfire-like continuous sources 
• Wavelet fields (Kaiser, with Tony Devaney  
(IEEE Trans.)) 
• Minimum support coincides with true support. 



2D Formulas 
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Exterior 

Interior 



Computational Implementation 
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Exterior 

Interior 

kR 

kR 

kR 

kR 

kR 

kR 

kR 

kR 

~ 

~ 

B 

B 



Cutoff 
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Log(Energy) 

radius 

max. curvature 

(for automatization) 



Example: (2D) Scattering by Cylinder 
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Example: (2D) Scattering by Cylinder 
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Noninfinite, yet  
may be a large number 



Example of the UWSC Sets 
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Noninfinite, yet  
may be a large number 



Essential NDF 
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index (l) 

singular values 

slower (smaller rho’) 

faster (larger rho’) 

knee  (kR) 

kR 
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Example 

Point  
source  
at 
(-4,0) 

PEC cylinder 
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Example 
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Example 
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Example 
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Example 



Hankel-function-based 
Backpropagation 



Inverse of the Hankel-function-based 
Backpropagation Pseudospectrum 
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Inverse of the Hankel-function-based 
Backpropagation Pseudospectrum 
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Finite-dimensional Approximation 
and Probabilistic Insight 

Original source (orange), and the minimum  
source region of its far field (blue) 
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Nonuniqueness 

Larger equivalent source 

In a real-world imaging problem, how useful is it to know the minimum region? 

There is an infinite number of equivalent sources larger than the minimum volume. 
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Confidence Interval 

Improbable source region 

Impossible source  
region 

Probable source region 
(in red) Width < l 

Minimum source region 
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Multiple Origins 

Intersection of the 
minimum spherical volumes 
gives a bounding region 
for the minimum source  
region. 
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Essentially finite-dimensional Space 
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Confidence Intervals 
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Tighter Bound 
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Analysis in infinite-dimensional Space 

Range(a>Rmin) 

Range(Rmin) 
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Ranges 

Since then 

(has essential dimension) 

Marengo 



Unlikely Dimensionality Reduction 

Random population of a space 

Parameterized  
subspace 

Can be thought of as a matching of data and source complexities  
(sparsity). 



Far Field Manifolds 

For minimum region 

For much larger region 

Critical boundary 

Source (configuration) space Field multipole domain  
(angular momentum) 
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Bounded Source Energy 
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n-ellipsoids 

Marengo 



n-ellipsoids (cont.) 
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Probability 
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Probability (cont.) 
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Probability (cont.) 
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Detailed Bounds 

Generally you solve this 
computationally 
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State of the Art Context 
There are great shape reconstruction methods in 
inverse scattering: MUSIC, factorization, linear 
sampling, no response test, compressive imaging. 
 
Multipole inverse support theory sheds light from the 
rigorous inverse diffraction point of view on the 
limitations and possibilities of inverting true supports 
from far field data. 
 
Unlike most existing methods, this approach holds for 
the single transmit experiment case. This also creates a 
concern related to uniqueness that can be tackled via a 
probabilistic inverse theory, which quantifies the 
method’s robustness. 
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State of the Art Context (2) 
 
Multipole inverse support theory has a big place:  
 
1- rigorously quantifies information about the source 
localization contained in the far field. 
 
2- “Single-probing-field” method. 
 
3- Surprisingly robust in inverse scattering applications 
despite expected nonuniqueness (the bound is “tight”). 
 
4- Gives rise to a new probabilistic inverse theory. 
 
5- Key appeal: Universality of the approach. 
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Conclusions 
• Outlined a method to estimate minimum source regions of  
   far fields. 
• Obtained results can be approximated  quite well via  
noniterative backpropagation-based pseudospectra, and the  
multipole theory predictions are consistent with those. 
• These representations are sparse, and both computationally 
   tractable and important in practical inverse scattering and  
   imaging. 
 
• Showed such estimates represent probabilistically robust 
   information about the true source support. 
 
• More source support information is encoded in the far fields 
   than one would be inclined to assume, given the nonuniqueness 
   of the inverse problem. It must be incorporated in the inversion  
   algorithms.  
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Collaborations Welcomed 
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My Research Areas 
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• Wave-based signal processing 
• Electromagnetic imaging and  
     inverse problems 
• Electromagnetic information theory 
• Electromagnetic detection theory 
• Electromagnetic theory 
• Array signal processing 
• Wireless communications 

 



Thank you! 
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