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Integrated Imaging: Combining 
Algorithms and Physical Sensors 

  Traditional sensor design is reaching its limits 
–  Difficult to only measure one parameter 
–  No longer possible to “fix” the device 

  Rather than making the “purest” measurement, make the most informative 
measurement. 

  Emerging examples: Computational photography; multiview imaging; 
tomography; hyperspectral imaging; 4D imaging; 

Novel 
Application 

Innovative 
Sensor 

Intelligent 
Algorithm 
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Inverse Problems in Imaging 
  Recover information from indirect measurements 

•  Image deblurring 
•  Tomography 
•  3D scene recovery and human vision 

X 
Unknown 
Quantity 

Inversion 
Method 

Other Unknowns 
(Nuisance Parameters) 

Y 
Data 

X 
Estimate 

Regularity Conditions 
(Prior knowledge) 

Physical System 
Linear/Nonlinear 

Deterministic/Stochastic 

  Image and system models are critical to accurate inversion 
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Inverse Problem: Example 

 Forward model 
•  Gravity 
•  Fluid dynamics 
•  Light propagation 
•  Image formation 

 Inversion 
•  Illumination estimation 
•  Shape from X 
•  Inverse dynamics 
•  Real world knowledge 

  Inverse Solution: Something fell in the water 
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Model Based Iterative Reconstruction (MBIR): 
A General Framework for Solving Inverse Problems 

Prior Model: 
p(x) 

Forward model: 
f(x) 

Physical 
system 

Difference 

x̂

y

f (x)

x

– Reconstructed object 
– Measurements from physical system 

x̂
y

x̂← argmax
x

log p(y | x)+ log p(x){ }
forward model prior model 
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Model-Based Data Fusion: 
Estimation 

 MAP with parameter estimation 

(not always a consistent estimator, ….) 

 

 What sensors or combination of sensors have the most 
information for the problem of interest? 

 

Representation - X 

Sensor 
Y1 

Sensor 
Y2 

Sensor 
Y3 

Prior 

x̂ = argmin
x∈Ω
min

φ
− log p(x)− log p(yk | x,φk )

k=1

K

∑⎛
⎝⎜

⎞
⎠⎟
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What opportunities does MBIR offer? 
 A general framework for sensing 
•  Image formation from both linear and nonlinear measurements 
•  Data fusion 
•  Dynamic sampling 

 Allows for the precise modeling of sensor 
•  Geometry and transfer function 
•  Noise modeling 
•  Linear and nonlinear systems 

 Explicitly incorporates prior model 
•  Can dramatically reduce variance 
•  Can incorporate physical models of target 

 Adapts to unknowns 
•  Automatic calibration of instrument 
•  Adaptive modeling of sample 
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Model-Based Imaging: 
Modeling Philosophy 

“Purity” “The realm of 
the unholy” 

Maximum Likelihood 
“No Prior Model” 

…Infinite variance 

Often not effective 

Physics-Based 
Models 

Acceptable 
Modeling Error Heuristic (but clear) 

assumptions 

Bizarrely simplistic 
priors and ad-hoc 

models of information The law of large 
numbers 

Unknown bias 

Un-holy, but often 
effective… 

But usually not 
enough… 
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Multislice Helical Scan CT 
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Physical 
system 

yx

Model-Based Iterative Reconstruction (MBIR) 

Image 
Model: p(x) Forward model f(x) 

Difference 

x̂
f (x)

Cost 
Function 

x̂ = argmin
x≥0

1
2
y − Ax( )T Λ y − Ax( ) +U x( )⎧

⎨
⎩

⎫
⎬
⎭

Error Sinogram (Ax-y) 

Fwd Model f(x) = Ax 
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Model-Based Iterative Reconstruction (MBIR):  
GE Healthcare’s Veo System 

•  What is Veo? 
– GE announce new product, “Veo”, based on MBIR 

reconstruction at RSNA 2010 
–  System received FDA 510(k) approval in 2011 
– Currently on sale in US as an upgrade option 
–  Partnership between GE Healthcare, Purdue 

University and the University of Notre Dame 
– Research team:  

•  Jean-Baptist Thibault, Jiang Hsieh (GE) 
•  Ken Sauer (Notre Dame) 
•  Me (Purdue) 
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E yi | x[ ] = Ai, j x j
j
∑ −  Line integral through object

Var yi | x[ ]≅ λi +σ e
2

λi
2 −  Photon counting + electronic noise

Scanner Forward Model: p(y|x) 

λi  −  Photon count at detector
λT −  Photon dosage

yi = ln λT
λi

⎛
⎝⎜

⎞
⎠⎟
− Attenuation measurement

− log p(y | x) = 1
2
y − Ax Λ

2 +  constantResults in: 
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Distance Driven Projector*  
 Fast and accurate projection of 3D voxels 

�c

Dc

x

y
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Source
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Source
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z

Voxel
�z

Dr
�r
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Lr

B. DeMan and S. Basu, “Distance-driven projection and backprojection in three-dimensions,” Physics in Medicine and 
Biology, vol. 49, pp. 2463–2475, 2004. 
 
Jean-Baptiste Thibault, Ken Sauer, Charles Bouman, and Jiang Hsieh, “A Three-Dimensional Statistical Approach to 
Improved Image Quality for Multi-Slice Helical CT,” Medical Physics, pp. 4526-4544, vol. 34, no. 11, November 2007. 
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Markov Random Field (MRF) Prior Model 

 Penalizes difference between neighboring voxels 

 26 point 3D neighborhood used 

p(x) = 1
Z

exp − ρ
x j − xk
σ

⎛
⎝⎜

⎞
⎠⎟j ,k{ }∈C

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ρ x j − xk( ) : Potential function
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MRF Potential Functions 
ρ( fi − f j ) : Penalty on the difference between 
                   neighboring voxels

If ρ( fi − f j ) =

fi − f j
σ f

2

c +
fi − f j
σ f

2−p

q −Generalized Gaussian MRF*

corresponds to diffuse interfaces 
 
corresponds to sharp interfaces 
- Total Variation Regularization 
(compressed sensing) 

p = 2

p =1

6.3 Convex Potential Functions 103

ρ(∆) Reference Potential Function Influence Function

∆2

2
Gaussian MRF
“Quadratic”
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Figure 6.4: List of the potential and influence functions for a variety of convex po-
tential functions for T = 1 and shape parameters p = 1.2 and q = 2.

p = 2

p =1

ρ( fi − f j )

*J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A three-dimensional statistical approach to improved image quality for 
multi-slice helical CT,” Med. Phys., vol. 34, no. 11, pp. 4526–4544, 2007 

σ f :  MRF scaling parameter (controls noise)  
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Iterative Coordinate Descent (ICD) 

–  Iteratively match each pixel (i.e. each column of A) 
–  Select each pixel to minimize total cost 

 
 

–  Issues: 
•  Efficient update by using sinogram error state 
•  High spatial frequencies converge first  
•  Benefits from good initial condition 

x j ← argmin
x j

1
2
y − Ax Λ

2 +U x( )⎧
⎨
⎩

⎫
⎬
⎭

pi = A∗, j x j

*K. Sauer and C. Bouman, “A Local Update Strategy for Iterative Reconstruction from Projections,” IEEE Trans. on Sig. 
Proc., vol. 41, no. 2, pp. 534-548, Feb. 1993. 
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Why ICD ? 

•  Advantages: 
•  Fast convergence at high spatial frequencies 

•  Can be initialized with FBP 
•  Sequence of 1D updates provides flexibility 
•  Easy to enforce positivity constraints 
•  Robust to non-idealities  

 Disadvantages 
•  Poor low frequency convergence 
•  Irregular memory access 
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Can we make ICD faster using 
selective updates? 

 Objective: find good correlation between update map 
and true RMS error at different stages of convergence 

Top 5% pixels with largest 
update values at iteration 1 

Top 5% pixels with largest 
RMS error at iteration 1 
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Non-homogeneous ICD (NH-ICD) Algorithm* 

Start 
NH-ICD 

Perform homogeneous step 

Stop 
NH-ICD 

Perform non-homogeneous 
iterations 

Perform homogeneous step 

Converged? 

yes 
no 

Non-homogeneous iteration 
for NH-ICD 

no 
yes 

Update PSC 

Update 5% of pixels with 
largest PSC in random order 

Start non-homogeneous 
iterations 

 

Stop non-homogeneous 
iterations 

20 sub-iterations 
complete? 

One  
sub-

iteration 

Top-level NH-ICD algorithm 

Zhou Yu, Jean-Baptiste Thibault, Charles A. Bouman, Ken D. Sauer, and Jiang Hsieh, “Fast Model-Based X-ray CT 
Reconstruction Using Spatially Non-Homogeneous ICD Optimization,” to appear in the IEEE Trans. on Image Processing.	
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Conventional ICD 

Homogeneous ICD with zero skipping 
NH-ICD without interleaving 

Interleaved NH-ICD 

RMSE Convergence Plots for NH-ICD 

•  NH-ICD 
•  Reduces transients at early stage allowing faster convergence 
•  Interleaving in early iterations further improves convergence speed 

Zhou Yu, Jean-Baptiste Thibault, Charles A. Bouman, Ken D. Sauer, and Jiang Hsieh, “Fast Model-Based X-ray CT 
Reconstruction Using Spatially Non-Homogeneous ICD Optimization,” to appear in the IEEE Trans. on Image Processing.	
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Gain Fluctuations in CT: Example 

X-ray  
tube 

Scanned 
object 

Detector 

mA 

t 

Tube signal 

yi 
Projections 

t 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
≈

ii

T
iy λα

λln

yi 
Projections 

t 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
≈

i

T
iy λ

λln~
Channel Channel 

•  Estimate gain 
fluctuations as part of 
MBIR reconstruction 
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Resolution vs Noise 

GEPP wire, 16x0.625mm, P15/16:1, 100mA, 10cm fov 

FBP std	

 FBP bone	

 MAP-ICD	



IQ	

 FBP std	

 FBP bone	

 MAP-ICD	



50% MTF	

 4.39	

 8.53	

 8.66	



10% MTF	

 7.04	

 11.90	

 13.20	



Std dev	

 24.99	

 90.94	

 13.01	



MTF comparable to FBP bone 
50% lower noise than FBP std 
Challenges usual trade-off 
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Noise Reduction 

FBP 320mA 

FBP std 80mA: Stdv: 60.427 Mean: 33.595 
MAP-ICD 80mA: Stdv: 21.488 Mean: 26.504 

FBP 80mA 

MAP-ICD 80mA 

FBP std 320mA: Stdv: 23.666 Mean: 25.537 

16x1.25mm axial hip study 
320mA vs 80mA 
WL=0, WW=350 

4x dose reduction potential ! 
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Iterative Reconstruction for 
Multislice Helical Scan CT 
64 slice GE VCT 

State-of-the-art 3D Recon GE MBIR 
Purdue/Notre Dame/GE algorithm 
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Iterative Reconstruction for 
Multislice Helical Scan CT 
64 slice GE VCT 

State-of-the-art 3D Recon GE MBIR 
Purdue/Notre Dame/GE algorithm 
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Iterative Reconstruction for 
Multislice Helical Scan CT 
64 slice GE VCT 

State-of-the-art 3D Recon GE MBIR 
Purdue/Notre Dame/GE algorithm 
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MBIR Reconstruction ASiR Reconstruction 

Free fluid/Blood in 
abdomen seen 
more clearly 

Bladder 
better 
visualized 

Images courtesy of The Queen Silvia Children’s 
Hospital 
Dr. Stålhammar 

Pediatric trauma, 120kV, 52-70mA, 0.4s/rot, 0.625mm, WW 
300 WL 50  

Liver laceration 
better defined 

Pediatric Image at Low Dose (Coronal) 
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MBIR Reconstruction ASiR Reconstruction 

Images courtesy of The Queen Silvia Children’s 
Hospital 
Dr. Stålhammar 

Pediatric trauma, 120kV, 52-70mA, 0.4s/rot, 0.625mm, WW 
300 WL 50  

Pediatric Image at Low Dose (Transverse) 
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FBP Reconstruction MBIR Reconstruction 

Adrenal nodule 

Images courtesy of Dr Gladys Lo 

kV 120, mA 150, 0.5s, 0.625mm, WW 350 WL 50 DFOV 42 Standard kernel in FBP 

Abdomen Imaging 



Dual Energy CT 
Ruoqiao Zhang, Purdue 
Ken Sauer, University of Notre Dame 
Jean-Baptiste Thibault, GE Healthcare 
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E yi | x[ ] = Ai, j x j
j
∑ −  Line integral through object

Var yi | x[ ]≅ λi +σ e
2

λi
2 −  Photon counting + electronic noise

Simple Scanner Forward Model: p(y|x) 

λi  −  Photon count at detector
λT −  Photon dosage

yi = ln λT
λi

⎛
⎝⎜

⎞
⎠⎟
− Attenuation measurement

− log p(y | x) = 1
2
y − Ax Λ

2 +  constantResults in: 
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Single Energy Transmission Model 
 We know that 

So 

 Conclusions 
•  At each energy, attenuation is exponential 
•  -log of count is proportional to projection of density. 
•  Produces tomographic reconstruction of densities 

λi = exp − µ(e,r)dr
Rayi
∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

yi = − log λi( ) = µ(e,r)dr
Rayi
∫
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 We know that 

 

So 

 

 

 Conclusions 
•  Attenuation is not exponential 
•  -log of count is not proportional to projection of density. 

Poly-Energetic Transmission Model 

λi = S e( )

∫ exp − µ(e,r)dr

Rayi
∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
de

yi = − log λi( ) = − log S e( )

∫ exp − µ(e,r)dr

Rayi
∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
de

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= ??
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 Assume that                         , then  

 

 

So 

 

where                                           and 
 

 Conclusions 
              is known as the beam hardening correction 

Single Material Transmission Model 
µ(e,r) = µ(e)m(r)

m(r) : material density
µ(e) : attenuation

λi = S e( )

∫ exp −µ(e) m(r)dr

Rayi
∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
de

h p( ) = S e( )

∫ exp −µ(e)p{ } de pi = m(r)dr

Rayi
∫

yi = − log λi( ) = h pi( )   or  p̂i = h
−1 yi( )

h−1 yi( )



34 

 Assume that                                          , then  

 

 
 

 
 

where 
 

 Conclusions 
                   is known as the material decomposition function 

Multiple Material Transmission Model 
µ(e,r) = µ1(e)m1(r) + µ2 (e)m2 (r)

m1(r),m2 (r)⎡⎣ ⎤⎦ : material densities for water and iodine

µ1(e),µ2 (e)⎡⎣ ⎤⎦ : mass attenuation function for water and iodine

p1, p2⎡⎣ ⎤⎦ = m1(r),m2 (r)⎡⎣ ⎤⎦dr
Rayi
∫

[yL,i , yh,i ] = − log λL,i( ),− log λL,i( )⎡
⎣

⎤
⎦ = h p1,i , p2,i( )

h−1 yl ,i , yh,i( )

h p1, p2( ) = − log S1 e( ),S2 e( )⎡⎣ ⎤⎦

∫ exp −µ1(e)p1 − µ2 (e)p2{ } de⎛

⎝⎜
⎞

⎠⎟
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 Make transmission measurement 

 For FBP, perform material decomposition 
 
 

 But for MBIR, the forward model is 

which leads to 

Dual Energy CT 

[yl ,i , yh,i ] = − log λl ,i( ),− log λh,i( )⎡
⎣

⎤
⎦ = h p1,i , p2,i( )

h−1 yl ,i , yh,i( ) = p1,i , p2,i⎡⎣ ⎤⎦ = m1(r),m2 (r)⎡⎣ ⎤⎦dr
Rayi
∫

yl ,i , yh,i⎡⎣ ⎤⎦ = h p1,i , p2,i( )

− log p y |m( ) = 1
2

yl ,i − hl p1,i( ), yh,i − hh p2,i( )⎡
⎣⎢

⎤
⎦⎥
wl 0

0 wh

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

∑
yl ,i − hl p1,i( )
yh,i − hh p2,i( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Approach I: Full Nonlinear Inversion 
 Nonlinear inversion from spectral measurements to material densities. 
     (TIP 2009 O’Sulllivan and Benac) (ISBI 2009 Huh and Fessler) 

 
     
  
 
 Pros:  
•  High flexibility;  
•  Can achieve high model accuracy. 

 Cons:  
•  Complex forward model, computationally difficult to model during iterations. 

: material density reconstructions
: spectral measurements
: statistical weights for reconstruction

, : indices of low/high energy spectrum

m
y
w
l h

m̂ = argmin
m

1
2

yl ,i − hl Ai ,*m1( ), yh,i − hh Ai ,*m2( )⎡
⎣⎢

⎤
⎦⎥
wl 0

0 wh

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

∑
yl ,i − hl Ai ,*m1( )
yh,i − hh Ai ,*m2( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+ S m( )

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
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Approach II: Linearized Model w/ Diagonal Weighting  
 Work from material sinograms to reconstruct each material individually.   
     (NSS 2004 Kinahan and Fessler) 

 
 
 

 Pros:  
•  Simpler forward model; computationally more practical. 

 Cons:  
•  Does not account for the well-known correlation between different material 

sinograms; (TMI’88 Kalender, Klotz and Kostaridou). 

: material density reconstructions
: material sinograms
: statistical weights for reconstruction

1,2 : indices of material 1 and material 2

m
p
b

m̂ = argmin
m

1
2

p̂l ,i − Ai ,*m1, p̂h,i − Ai ,*m2
⎡
⎣⎢

⎤
⎦⎥
b1 0

0 b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

∑
p̂l ,i − Ai ,*m1
p̂h,i − Ai ,*m2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+ S m1( )+ S m2( )( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

p̂1,i , p̂2,i⎡⎣ ⎤⎦ = h
−1 yl ,i , yh,i( )
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Proposed: Model with Full Statistical Weighting  
 Models the interdependency between different materials. 

 

 Off-diagonal weights model the correlation between p1 and p2. 

: material density reconstructions
: material sinograms
: statistical weights for reconstruction

1,2 : indices of material 1 and material 2

m
p
b

m̂ = argmin
m

1
2

p̂l ,i − Ai ,*m1, p̂h,i − Ai ,*m2
⎡
⎣⎢

⎤
⎦⎥
b1 b3
b3 b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥rays

∑
p̂l ,i − Ai ,*m1
p̂h,i − Ai ,*m2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+ S m1( )+ S m2( )( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

B 
b1 b3
b3 b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ∇h−1 y( )⎡⎣ ⎤⎦

−1 wl 0

0 wh

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∇h−1 y( )⎡⎣ ⎤⎦

−T
.

p̂1,i , p̂2,i⎡⎣ ⎤⎦ = h
−1 yl ,i , yh,i( )



39 

Fast kV Switching 

 Alternating samples from high 
and low energy source 

 Samples are missing! 

 Solution: Interpolate missing 
sample, but use zero weighting 

B = ∇h−1 y( )⎡⎣ ⎤⎦
−1 0 0

0 wh

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∇h−1 y( )⎡⎣ ⎤⎦

−T

B = ∇h−1 y( )⎡⎣ ⎤⎦
−1 wl 0

0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∇h−1 y( )⎡⎣ ⎤⎦

−TIf low kV, then => 

If low kV, then => 



40 

Important of Diagonal Terms in  
Fast kV Switching 

 Joint log-likelihood approximation is insensitive 
to interpolated value! 
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Non-negativity for Dual Energy Optimization 

  Ω = (m1,m2 ) :µ1(e) m1 +µ2(e) m2 ≥ 0,∀e∈[40,140]keV{ }

  
m = (m1,m2 ) : m ⋅nmin

T ≥ 0 and m ⋅nmax
T ≥ 0{ }.

Infinite number of constraints: 

Two constraints: 
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Experiments 
 We compare three DECT reconstruction methods: 

1.  Denoised FBP; 
2.  Incomplete DE-MBIR; 
3.  Joint DE-MBIR. 

 Phantom recon with the GE Performance Phantom 
•  Qualitative comparison; 
•  Noise level evaluation; 
•  Resolution evaluation. 

 Clinical recon with a GSI abdominal scan 
•  Qualitative comparison. 

1

2

0
0
b

B
b

⎡ ⎤
⇒ = ⎢ ⎥

⎣ ⎦

1 3
3

3 2

, 0
b b

B b
b b
⎡ ⎤

⇒ = ≠⎢ ⎥
⎣ ⎦
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Phantom Results: Monochromatic at 70keV 
M

on
o 

Denoised 
FBP 

R
es

ol
ut

io
n 

ba
rs

 
Incomplete DE-
MBIR 

Joint DE-MBIR 

mono: WL 0HU, WW1000HU;   resolution bars: WL 600HU, WW 200HU.




44 

Phantom Results: Water and Iodine 
W

at
er 

Incomplete DE-
MBIR 

Joint DE-
MBIR 

Io
di

n
e 

water: WL 900mg/cc, WW1600mg/cc;   iodine: WL 3mg/cc, WW 40mg/cc.


Denoised 
FBP 
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Phantom Results: Resolution Bars 
•  CT values in the 70keV attenuation map along  reference 

line. 
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Evaluation Metrics 

 Conclusions: 
    With comparable noise level in 70keV monochromatic images 

1.  Joint DE-MBIR significantly reduces noise compared to FBP and 
Incomplete DE-MBIR in material density images. 

2.  Joint DE-MBIR improves overall in-plane resolution by roughly 90% over 
FBP, and 40% over Incomplete DE-MBIR. 

Noise Std. Dev. 10% MTF (lp/cm) * 

Water 
(mg/
cc) 

Iodine 
(mg/
cc) 

Mono 
(HU) Water Iodine Mono 

Denoised FBP 21.21 0.60 14.18 6.15 5.81 6.60 

Incomplete  
DE-MBIR 14.31 0.89 13.55 8.61 6.35 8.90 

Joint DE-MBIR 9.68 0.30 13.69 11.80 10.59 11.70 
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Clinical Results: Monochromatic at 70keV 

 Joint DE-MBIR achieves: 
•  resolution improvement 
•  contrast improvement 

Denoised 
FBP 


Incomplete DE-
MBIR 


WL 40HU, WW 400HU 
* matched noise level in mono images 

Joint DE-
MBIR 
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Clinical Results: Iodine 

 Joint DE-MBIR achieves: 
•  contrast improvement 

WL 7.5mg/cc, WW 17.5mg/cc 
* matched noise level in mono images 

Denoised 
FBP 


Incomplete DE-
MBIR 


Joint DE-
MBIR 
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Clinical Results: Water 

 Joint DE-MBIR achieves: 
•  resolution improvement 
•  noise reduction 
•  bone improvement 

WL 1000mg/cc, WW 300mg/
cc


* matched noise level in mono images 

Denoised 
FBP 


Incomplete DE-
MBIR 


Joint DE-
MBIR 




Security Imaging 
Sondre Skatter, Morpho Detection 
Simon Bedford, Astrophysics 
Jordan Kisner, Purdue 
Eri Haneda, Purdue 
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Why could MBIR be valuable in Security 
Applications? 

  Reduced artifacts 
•  Reduction of streaks => Better segmentation 
•  Reduced medal artifacts 
•  Reduced beam-hardening artifacts 

  Reconstruction from non-classical measurements 
•  Limited angle/limited view 
•  Fixed gantry systems 
•  Multimodal/nonlinear measurements 

–  Dual or poly-energetic 
–  Integrated projection/scatter from active/passive sources 

  Incorporation of more physical real-world constraints 

•  Material characteristic 
•  Image structure 
•  Integrated reconstruction and processing (reconstruction and segmentation) 

FBP reconstruction 

Mr. Potato head 

Box cutter Steel 

Gel pad 

Tray 



Microscopy for Material Science 
Venkat Venkatakrishnan, Purdue 
Larry Drummy, AFRL 
Marc De Graef, CMU 
Jeff Simmons, AFRL 
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Electron Microscopy Imaging 

Dark Field  

Bright Field  •  2-D Characterization of 
samples (biology, material 
science) 

•  Various modalities (Bright 
Field, Dark Field etc.) 

STEM 

*http://bio3d.colorado.edu/imod/doc/etomoTutorial.html 
** L.F. Drummy, AFRL 

Biological sample* Aluminum  nanoparticles** 

Aluminum  nanoparticles** 
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High Angle Annular Dark Field (HAADF) STEM 
Tomography  

 Acquisition 
 An electron beam is focused at a point on 

the sample. 
 An annular ring detects elastically scattered 

electrons, but angle is small. 
 Geometry 

 Electron beam is scanned across sample 
 Sample is tilted in one axis 
 Results in 2D parallel beam data 

 Forward model 
 Dark field => emission equations 
 Bright field => transmission equations 



HAADF and BF Measurement Models 

 

I z( ) = I0 exp − µ r( )
0

z

∫ dr
⎛

⎝⎜
⎞

⎠⎟

IT  I z( )

dz 

I
0

I
m

I
T

Attenuation of unscattered beam 

Attenuation of scattered beam 

So we get 

s z( )dz
0

T

∫ = Im
I0

µ z( )dz
0

T

∫ = − log IT
I0

⎛
⎝⎜

⎞
⎠⎟

s z( ) = σ z( )N z( )

Scattering coefficient: 

µ z( )

Attenuation coefficient: 

dIm
dz

= I z( )s z( )

Im = I z( )s z( )dz
0

T

∫ ≅ I0 s z( )dz
0

T

∫
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MAP Cost Function for HAADF Problem 

  MAP cost function is given by 

Model-based reconstruction allows use to estimate unknown 
parameters for offset, gain and noise.  

x̂ = argmin
x≥0

min
I ,µ

1
2
yk − I0,kAkx − µk1

2

Λkk=0

Nv−1

∑ + 1
pσ x

p wij xi − x j
p

{i, j}∈ζ
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

subject to the constraint  Ik = I0
k=0

Nv−1

∏
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Titanium Dioxide Nanoparticle* (x-y slice) 
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HAADF Data At Zero Tilt 

•  Polystyrene 
functionalized 
titanium dioxide 
nanoparticles 

•  87 tilts from -70° to 
+70° 
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3-D Reconstruction (x-z slice) 
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Impact of varying     in prior   
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TiO2 Reconstruction 3D Rendering* 

*Lawrence Drummy, AFRL 
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Real Al Sphere Data Set* (x-y slice) 

FBP using IMOD SIRT using IMOD MBIR 

HAADF Data At Zero 
Tilt 

x

y

•  Aluminum spheres 
in a carbon support 
(600 nm thick) 

•  65 tilts from -70° 
to +70° 

*Lawrence Drummy, AFRL 
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Real Al Spheres (x-z slice) 

FBP using IMOD SIRT using IMOD MBIR 

HAADF Data At Zero 
Tilt 

x

z

Reconstructed 
slice 
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Bright Field (BF) Electron Tomography   

 Problem: 3-D reconstruction of BF 
images is normally not done due to 
anomalous effects of Bragg scatter. 

 Medium term approach: Detect 
Bragg scatter as part of the 
reconstruction process forward 
modeling. 

 Long term approach: Model Bragg 
scatter signal in forward model. Measurements 

effected by 
Bragg scatter 
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MBIR Reconstruction with Bragg Rejection 

f̂ ,d( ) = argmin
f ≥0,d

1
2

βT gi − Ai* f − d( ) Λii( )
i=1

M

∑  + wijρ fi − f j( )
{i, j}∈χ
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

f :  Linear attenuation coefficients to reconstruct (nm-1)
gi = − log λi( )
d = − log(λD )
λi :  Measured BF signal (counts)
λD : Unknown Dosage (counts) - can be estimated 

βT (x) =
x2  x < T

T 2 x ≥ T

⎧
⎨
⎪

⎩⎪

Λii :  1
Noise variance

 (scaled) for measurement i 

Ai* :  i th  row of forward projection matrix
M : Total number of measurements
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Reconstruction With Bragg Correction* 

MBIR Without Bragg Correction MBIR With Bragg Correction 

x

z

BF TEM Data At Zero Tilt  

Reconstructed 
slice 

*Lawrence Drummy, AFRL 
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Bragg Selector and Corresponding Measurement 

Bragg 
Scatter 
detected 

Bragg 
Scatter 
detected 

Tilt 0 

Tilt +70  
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4-D CT Imaging of Materials 

 Objective: Reconstruct a continuously time 
varying object at high time and space 
resolution. 

 

y

Axis of 
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Time Varying 
Object 
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Using MBIR for Time-Space Reconstruction 
 MBIR allows for: 
•  Reconstruction using any sampling points in time and space 
•  Projections at any time, angle, location 

 Advantages 
•  Reconstructs at higher (any) time resolution. 
•  Accounts for exact time of projection 
•  Increases envelope of experimental possibilities 

X-Ray 
Source 

Detecto
r 

Projections acquired 
over entire 
experiment 

Rotate 
object 

MBIR 

1y
  y2

  y3

  x1

  x2

  x3

High Time 
Resolution 
Reconstructions 
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MAP Reconstruction Problem for 4-D CT 

 Reconstruction is computed by minimizing cost function 
 

x̂ = argmin
x

1
2
yk − Akx Λ

2

k  sample times
∑ + wij

i, j∈Ωs

∑ ρs xi − x j( )+ wij
i, j∈Ωt

∑ ρt xi − x j( )
Forward 

Model 
Prior Model which 

models spatial 
correlation 

Prior Model which 
models temporal 

correlation 
x̂→ Reconstructed object
y→ Projections 
Λ→ Diagonal matrix which models the noise
A→ Forward projection matrix
Ωs → Set of all neighboring voxels in space
Ωt → Set of all neighboring voxels across time
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3-D CT Reconstruction: 2-D space 1-D Time* 

Low Time Resolution 
FBP reconstruction 

MBIR at 4 times the 
time  

resolution of FBP 

Both reconstructions use 540 projections 
acquired over 3 complete rotations of the object 

*Peter Voorhees, Northwestern University 



Plug & Play Models 
Venkat Venkatakrishnan, Purdue 
Brendt Wohlberg, LANL 
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MAP Inversion Framework	



 Question: How to mix an match new models?	


•  Many new priors: kSVD, bi-lateral filters, non-local means, BM3D, TV, etc.	


•  Integrating new priors with sophisticated forward models is difficult!	


 Approach	


•  Use ADMM to split forward an prior terms.	


•  Allows for independent implementation of prior and forward models.	


•  Allows for the use of priors without an explicit optimization formulation.	



l y;x( ) = − log p y x( )
s x( ) = − log p x( )

x̂← argmin
x

l y;x( ) + βs x( ){ }
- Forward model	



- Prior model	



*S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the 
alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, Jul. 2011	
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Plug-and-Play Priors Algorithm 

 Where F(.) and H(.) are independent software modules: 
 

Initialize v = x,  u  =  0
Repeat until convergence{

1. x = v̂ − u
x̂← F y, x;λ( )  //Invert foward model

2. v = x̂ + u

v̂← H v;σ n
2( )  //Denoise v

3. u← u + x̂ − v̂
}

Plug in any prior -
> only redesign 
the denoising 
routine ! 

H x;σ n
2( ) = argmin

x

1
2σ n

2 x − x
2 + s(x)

⎧
⎨
⎩

⎫
⎬
⎭

F y, x;λ( ) = argmin
x

l y; x( )+ λ
2
x − x 2⎧

⎨
⎩

⎫
⎬
⎭

- Model-inversion operator 
 
 
- Denoising operator 
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Data : Phantom and Sinogram  

Phantom Sinogram 
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Minimum RMSE Reconstructions 
K-SVD  BM3D PLOW 

q-GGMRF TV Discrete  
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Root Mean Squared Error 

Denoising Algorithm/
Prior 

RMSE 

K-SVD 2.32 
BM3D 2.51 
PLOW 2.70 

TV 3.42 
q-GGMRF 4.46 

Discrete Reconstruction 1.32 



77 

Convergence Plot 
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Comparison of convergence of ADMM with 
traditional approach (ICD with q-GGMRF [4]) 
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Major directions  
in Model-based Imaging 
 Forward modeling: Account for complex nonlinear 

parameters and models 

 Prior modeling: Account for properties of real 
images 

 Community: Create interdisciplinary teams to 
solve high impact problems 


