Model Based Imaging

Charles A. Bouman
School of Electrical and Computer Engineering
Purdue University

Laurence Livermore National Laboratory
2013-05-21

Co-authored with:
Ken Sauer, University of Notre Dame
Jean-Baptiste Thibault, GE Healthcare
Jiang Hsieh, GE Healthcare
Zhou Yu, GE Healthcare

Venkat Venkatakrishnan, Purdue
Larry Drummy, AFRL

Marc De Graef, CMU

Jeff Simmons, AFRL

Brendt Wohlberg, LANL



Integrated Imaging: Combining
Algorithms and Physical Sensors

® Traditional sensor design is reaching its limits
— Difficult to only measure one parameter
— No longer possible to “fix” the device

= Rather than making the “purest” measurement, make the most informative
measurement.

= Emerging examples: Computational photography; multiview imaging;
tomography; hyperspectral imaging; 4D imaging;



Inverse Problems in Imaging

= Recover information from indirect measurements
* Image deblurring
* Tomography
3D scene recovery and human vision

Physical System A
X Linear/Nonlinear > Inversion X
Unknown Deterministic/Stochastic Y Method Estimate
Quantity T Data T
Other Unknowns Regularity Conditions
(Nuisance Parameters) (Prior knowledge)

= Image and system models are critical to accurate inversion



Inverse Problem: Example

*Forward model
* Gravity
 Fluid dynamics
 Light propagation

* Image formation

=nversion
e [llumination estimation

 Shape from X

 Inverse dynamics

» Real world knowledge

s Inverse Solution: Something fell in the water
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Model Based Iterative Reconstruction (MBIR):
A General Framework for Solving Inverse Problems

Physical

Y

system

p(x)

Prior Model:

=)

f(x)

Difference

Forward model:

Fx)

X ¢ arg max{log p(y1x)+log p(x)}

forward model prior model

X — Reconstructed object

Yy — Measurements from physical system
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Model-Based Data Fusion:
Estimation

Sensor
Y

Sensor
Y,

Sensor
Y2
Representation - X

"MAP with parameter estimation

K
X =argmin min(—log p(x)— Zlog p(y, | x?¢k>]
k=1

xeQQ ¢

(not always a consistent estimator, ....)

= What sensors or combination of sensors have the most
information for the problem of interest?
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What opportunities does MBIR offer?

*A general framework for sensing

* Image formation from both linear and nonlinear measurements
« Data fusion

* Dynamic sampling

=Allows for the precise modeling of sensor
« Geometry and transfer function

* Noise modeling

* Linear and nonlinear systems

=Explicitly incorporates prior model
« Can dramatically reduce variance
« Can incorporate physical models of target

=Adapts to unknowns

« Automatic calibration of instrument
« Adaptive modeling of sample



Model-Based Imaging:
Modeling Philosophy

“Purity” “The realm of

the unholy”
Maximum Likelihood Physics-Based Bizarrely simplistic
“No Prior Model” Models priors and ad-hoc
The law of large models of information
numbers Acceptable -
Modelmg Error Heuristic (but clear)
...Infinite variance assumptions
. But usually not Unknown bias
Often not effective enough. ..

Un-holy, but often
effective...
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Multislice Helical Scan CT
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Model-Based Iterative Reconstruction (MBIR)

Error Sinogram (Ax-y)

Cost %= argmin{%(y — Ax) A(y— Ax)+ U(x)}

. >
Function x20



Model-Based Iterative Reconstruction (MBIR):
GE Healthcare’s Veo System

« What is Veo?

— GE announce new product, “Veo”, based on MBIR
reconstruction at RSNA 2010

— System received FDA 510(k) approval in 2011
— Currently on sale in US as an upgrade option

— Partnership between GE Healthcare, Purdue
University and the University of Notre Dame

— Research team:
e Jean-Baptist Thibault, Jiang Hsieh (GE)
 Ken Sauer (Notre Dame)
e Me (Purdue)
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Scanner Forward Model: p(y|x)

ML Path of Helical Scan
Xy S°“m<2:§::§::~ 4 A, — Photon count at detector
Plane of Desired ::\:::\::\ ) /lT — Photon dOS&ge
Image Reconstruction P [H{ M
Wiy _ T -
y;, = In| — |- Attenuation measurement
i ;Li
\\\ 'K
/ Detector Array

Ly o J

E [yl. Ix] = 2 A. . x. — Line integral through object
j

A+o’
12

Var[ N Ix] = — Photon counting + electronic noise

: 1
Results in: -logp(ylx)= EHy — Ax|[, + constant
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Distance Driven Projector®*
*Fast and accurate projection of 3D voxels
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B. DeMan and S. Basu, “Distance-driven projection and backprojection in three-dimensions,” Physics in Medicine and
Biology, vol. 49, pp. 24632475, 2004.

Jean-Baptiste Thibault, Ken Sauer, Charles Bouman, and Jiatig Hsieh, “A Three-Dimensional Statistical Approach to
Improved Image Quality for Multi-Slice Helical CT,” Medical Physics, pp. 4526-4544, vol. 34, no. 11, November 2007.



Markov Random Field (MRF) Prior Model

"Penalizes difference between neighboring voxels

=26 point 3D neighborhood used

—————————————————————————

o 1 X -
PANRGERTOE. p(x)=—expi— Y. p( / "j
. Z igec \ O

p (x = xk) : Potential function
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MRF Potential Functions

P(f; = f;) : Penalty on the difference between o(f =)
neighboring voxels C

Gaussian (L2) Potential

2
fi= 1 i
Gf 2
pr(fi_fj) = 2-p p=2
c+ﬁ_ﬁ T
o N
q _ Generalized Gaussian MRF* ; Total Variation (H) Potential
p=2 corresponds to diffuse interfaces )
p=1
p=1 corresponds to sharp interfaces |
- Total Variation Regularization
(compressed sensing) e S

0, : MRF scaling parameter (controls noise)

*J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh, “A threeldimensional statistical approach to improved image quality for
multi-slice helical CT,” Med. Phys., vol. 34, no. 11, pp. 4526—4544, 2007



Iterative Coordinate Descent (ICD)

— lteratively match each pixel (i.e. each column of A)
— Select each pixel to minimize total cost

pi = A*,j 'xj

X, argnEn{%”y — Ax| + U(x)}
— Issues:
o Efficient update by using sinogram error state
e High spatial frequencies converge first
e Benefits from good initial condition

*K. Sauer and C. Bouman, “A Local Update Strategy for Iteratlve Reconstruction from Projections,” IEEE Trans. on Sig.
Proc., vol. 41, no. 2, pp. 534-548, Feb. 1993.



Why ICD ?

» Advantages:

» Fast convergence at high spatial frequencies

e Can be initialized with FBP

* Sequence of 1D updates provides flexibility
» Easy to enforce positivity constraints

 Robust to non-idealities

*Disadvantages
* Poor low frequency convergence

* Irregular memory access
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Can we make ICD faster using
selective updates?

=Obijective: find good correlation between update map
and true RMS error at different stages of convergence

Top 5% pixels with largest Top 5%"'pixels with largest
update values at iteration 1 " RMS error at iteration 1
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Non-homogeneous ICD (NH-ICD) Algorithm*

Start .
NH-ICD Start non-homogeneous
| iterations
Perform homogeneous step ,
> Update PSC A
| Perform non-homogeneous Y
] iterations Update 5% of pixels with One
largest PSC in random order > sub-
v iteration
Perform homogeneous step v
Y 20 sub-iterations
v % o complete? /
Converged?
no J il yes
vy Y€S . | Stop non-homogeneous
Stop iterations
NH-ICD '
Toolevel NH-ICD algorith Non-homogeneous iteration
op-leve - algorithm for NH-ICD

Zhou Yu, Jean-Baptiste Thibault, Charles A. Bouman, Ken D.1§auer, and Jiang Hsieh, “Fast Model-Based X-ray CT
Reconstruction Using Spatially Non-Homogeneous ICD Optimization,” to appear in the IEEE Trans. on Image Processing.



RMSE Convergence Plots for NH-ICD

70.0000
—— Conventional ICD
60.0000 . . .
. “R \ —— Homogeneous ICD with zero skipping
© 500000 . . .
i )K \\ —=— NH-ICD without interleaving
N 40.0000 e _
2 “-\ \\\ Interleaved NH-ICD
Y 30.0000 ,..\‘\ \
20.0000 «\\R \-\\\‘\
1000 \M
0.0000 , M =
0.0000 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000
Equit
« NH-ICD

« Reduces transients at early stage allowing faster convergence
e Interleaving 1n early iterations further improves convergence speed

Zhou Yu, Jean-Baptiste Thibault, Charles A. Bouman, Ken D.i§auer, and Jiang Hsieh, “Fast Model-Based X-ray CT
Reconstruction Using Spatially Non-Homogeneous ICD Optimization,” to appear in the IEEE Trans. on Image Processing.



Gain Fluctuations in CT: Example

A Tube signal
mA 4 . .
y , o * Estimate gain
_ray .
tube A8 - fluctuations as part of
g % =t MBIR reconstruction
y, Projections y, Projections t
Scanned 2T
object /s
> 7 >
Channel Channel
Detector ¥ =In A vy, =In A
l l
2 o
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Resolution vs Noise

GEPP wire, 16x0.625mm, P15/16:1, 100mA, 10cm fov

MTF comparable to FBP bone 'Q | FBPsd | FBPbone | MAPICD
50% lower noise than FBP std 50% MTF | 439 8.53 8.66
Challenges usual trade-off 0% MTE | 704 1.9 1390

21

Std dev

24.99

90.94

13.01




Noise Reduction

-

16x1.25mm axial hip study
320mA vs 80mA
WL=0, WW=350

FBP std 320mA: Stdv: 23.666 Mean: 25.537
MAP-ICD 80mA: Stdv: 21.488 Mean: 26.504
FBP std 80mA: Stdv: 60.427 Mean: 33.595
...... e 4x dose reduction potential !

22



Iterative Reconstruction for

Multislice Helical Scan CT
64 slice GE VCT

FRGEDTERTHD
ﬂ.rﬁ
ANORymousSE4 28

State-of-the-art 3D Recon GE MBIR
Purdue/Notre Dame/GE algorithm
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lterative Reconstruction for

Multislice Helical Scan CT
64 slice GE VCT

oron - % 7399 fy C 27 " ) FROEDTERT ML Wl

HESSSHmrn
7SENIESR

10 P

L=50

State-of-the-art 3D Recon GE MBIR _
Purdue/Notre Dame/GE algorithm
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Iterative Reconstruction for

Multislice Helical Scan CT
64 slice GE VCT

P:71.0

DFOY 42.0cm
STNDI+

State-of-the-art 3D Recon GE MBIR _
Purdue/Notre Dame/GE algorithm
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Pedlatrlc Image at Low Dose (Coronal)
' N el ‘*’:-5"1“"

Liver laceration
better defined

Free fluid/Blood in
abdomen seen

more clearly

Bladder
better
visualized

T T

ASlR Reconstruc’tloh MBIR Recgnstruuon

Images courtesy of The Queen Silvia Children’s

Hospital - Pediatric trguma, 120kV, 52-70mA, 0.4s/rot, 0.625mm, WW

Dr. Stalhammar IR R 300 WL 50




Pediatric Image at Low Dose (Transverse)

ASIR Reconstruction MBIR Reconstruction

gy ouriesy o The mueen SIA EIAENS  pe diatric tiguma, 120KV, 52-70mA, 0.4s/rot, 0.625mm, WW

Hospital Vi
Dr. Stalhammar 300 WL 50



Abdomen Imaging

Adrgnal nodule

[ FBPRecostrctlon | 'IR Reconstruction

kV 120, mA 150, 0.5s, 0.625mm, WW 350 WL 50 DFQOV 42 Standard kernel in FBP

Images courtesy of Dr Gladys Lo Q. T:HO%F:L 28

Hong Kong Sa



Dual Energy CT

Ruoqgiao Zhang, Purdue
Ken Sauer, University of Notre Dame
Jean-Baptiste Thibault, GE Healthcare



Simple Scanner Forward Model: p(y|x)

ML Path of Helical Scan
Xy S°“r°e<2:~i::§::~ 4 A, — Photon count at detector
Plane of Desired ::\:::\::\ ) /lT — Photon dosage
Image Reconstruction P [H{ M
I _ T :
y;, = In| — |- Attenuation measurement
i ;Li
\\\ K
/ Detector Array

Ly o J

E [yl. Ix] = 2 A. . x. — Line integral through object
j

A+o’
)«2

Var[ N Ix] = — Photon counting + electronic noise

: 1
Results in: -logp(ylx)= EHy — Ax|[, + constant
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Single Energy Transmission Model
*We know that

ﬂ_,l. = exp{— I ,u(e,r)dr}

Ray,

So

fiz—log(/ii): J u(e,r)dr

Ray,

=Conclusions
* At each energy, attenuation 1s exponential
* -log of count is proportional to projection of density.

« Produces tomographic reconstruction of densities
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Poly-Energetic Transmission Model

=We know that

2= S(e) exp{— | ,u(e,r)dr} de

R Ray,

So

=l )=t [ )| e |-

Ray,

=Conclusions
 Attenuation 1s not exponential

 -log of count 1s not proportional to projection of density.
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Single Material Transmission Model
= Assume that u(e,r)=u(e)m(r), then

A :J' S(e) eXp{—,u(e) J' m(r)dr} Je m(r):material density

R Ray, U(e) : attenuation

S _
0 v, =~log(%)=h(p,) or p,=h"(y,)

where h(p)=jS (e)exp{-w(e)p}de and p,= | m(r)dr

R Ray,

»Conclusions

h' ( yl.) is known as the beam hardening correction
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Multiple Material Transmission Model
= Assume that u(e,r) = (eym (r)+ u,(e)m,(r), then

[)—/L,z‘")—/h,i] |: log(l )—log(ﬂ. )}:h(plai’pzai)

|:p1’p2:| = J [ml(’”),mz(l”)}dr

Ray,

[ml(r),mz(r)] : material densities for water and iodine

[ . (e), (e)] : mass attenuation function for water and 10dine

where
pl P, =—10g(J|: }exp{ ,Ltl(e)pl—,uz(e)pz}de]

=Conclusions

h' ( VY, l.) is known as the material decomposition function



Dual Energy CT

»Make transmission measurement

[)_’;,Z-a)_’h,i] = [—log(ﬂ_v,l.),—log(/ih’i)} = h(pl,i’p2,i)

*For FBP, perform material decomposition

(3, 3,) = Puspas = | [my(),my () ]dr

Ray,

*But for MBIR, the forward model 1s

5.5, |=h(p,py)

which leads to

_1ogp(y|m):%2'[ yl,i_hl(pl,i)’ yhi_h’“(pz’i) }{ l
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Approach I: Full Nonlinear Inversion

*Nonlinear inversion from spectral measurements to material densities.
(TIP 2009 O’Sulllivan and Benac) (ISBI 2009 Huh and Fessler)

Y g — N m : material density reconstructions
Data terative Recon y: spe(‘:tr:fll meas‘urements |
Acquisition w : statistical weights for reconstruction
Yn . m, [,k : indices of low/high energy spectrum

rhzal‘gn}nin %Z[ yl,i_hl(Ai,*ml)’ yh,i_hh(A’?*mz) jl

1

"Pros:
 High flexibility;
« Can achieve high model accuracy.
=Cons:
« Complex forward model, computation3a6lly difficult to model during iterations.




Approach llI: Linearized Model w/ Diagonal Weighting

=Work from material sinograms to reconstruct each material individually.
(NSS 2004 Kinahan and Fessler)

Ji > Material 4! » Iterative Recon [=———> 17,
Decomposition m : material density reconstructions
Data B! ©) p : material sinograms
Acquisition or b : statistical weights for reconstruction
Vi, Sinogram )2 _ 1,2 : indices of material 1 and material 2
*  Estimation » Iterative Recon > m,

[pl,i’ﬁZ,i] =h" (yl,i’yh,i)

nAft:arng}"in 12[ p,—A4.m, p, —A4.m, } b 0 P, —4.m +(S(ml)+S(m2))

i*

24 ’ 0 b Py, —4,.m

*Pros:
« Simpler forward model; computationally more practical.

=Cons:

* Does not account for the well-known correlation between different material
sinograms; (TMI'88 Kalender, Klotz and Kostaridou).
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Proposed: Model with Full Statistical Weighting

*Models the interdependency between different materials.

Data
Acquisition

Vi

Vi

\ 4

Material
Decomposition
N0
or
Sinogram
Estimation

P,

»
>

P

______________

______________

—

—  m

[ﬁl,i’ﬁZ,i] =h" (yl,i’yhai)

m : material density reconstructions
p : material sinograms
b : statistical weights for reconstruction

1,2 : indices of material 1 and material 2

: 1 [
m=argmin-< —
gming—>

rays

A

pl’i—A m

ix e

P, —4,.m

i*

2

J

bl b3
b3 b2

=Off-diagonal weights model the correlation between p, and p,.

A bl
B2
b3

3

2

RN Rt
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Fast kV Switching

: *Alternating samples from high

and low energy source

=*Samples are missing!

=Solution: Interpolate missing
sample, but use zero weighting

If low kV, then => B=[Vh1(y)]1[ Wi _[Vhl(y)f

If low kV, then => B=[Vh1(y)]1[8 V(V) _[Vh‘l(y)r




Important of Diagonal Terms in
Fast kV Switching

§ 20
-30
00
g
Do 0
- 2
pw(mglcm )
(a) true log-likelihood
| -
10 s
8 -20 3
-30
400 0
»o/ 200 o( 200
%, - %,
< (a) -
%9 ' ‘ >3 8 '
Py (malem’) x10 75 P,y (mglem?) X
(b) joint approximation (c) independent approximation

=Joint log-likelihood approximation is insensitive
to interpolated value!
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Non-negativity for Dual Energy Optimization

Infinite number of constraints:
Q={(m,m,): u,(e) m +1,(e) m, 20,Vee[40,140]keV }

Two constraints: 1
{m =(m,m,): m-n§lin > (0 and m'”iax > O}.

S~
-
-
- -
-
-
-
-
-
-

05

iodine density (mg/cm3)
o

E 05 0 0.5
41 water density (mg/cm3)



Experiments

*We compare three DECT reconstruction methods:
1. Denoised FBP;
2. Incomplete DE-MBIR; ~° :ﬁ) lﬂ
3. Joint DE-MBIR. a0

=Phantom recon with the GE Performance P
* Qualitative comparison;

* Noise level evaluation;
e Resolution evaluation.

*Clinical recon with a GSI abdominal scan
* Qualitative comparison.
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Phantom Results: Monochromatic at 70keV
Denoised Incomplete DE- Joint DE-MBIR

Mono

£,

Y

Resolution

mono: WL OHU, WW1000HU; resolution bars: WL 600HU, WW 200HU.



Phantom Results: Water and lodine

Denoised Incomplete DE- Joint DE-

‘...

water: WL 900mg/cc, WW1600mg/cc; iodine: WL 3mg/cc, WW 40mg/cc.




Phantom Results: Resolution Bars

« CT values in the 70keV attenuation map along reference
line.

200

“ M [

attenuation (HU)
W N
o o
o o
——

! o k\&) W |

—— Denoised FBP U
-700 | —— Incomplete DE-MBIR
— Joint DE-MBIR

20 40 60 80 100 120 140 160
pixels along reference line
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Evaluation Metrics

Noise Std. Dev.

10% MTF (lp/cm) *

Water

lodine

(mg/ | (mg/ Mono Water | lodine | Mono
(HU)
cc) cc)
Denoised FBP | 21.21 | 0.60 | 1418 | 6.15 5.81 6.60
Incomplete
DE-MBIR 14.31 | 0.89 | 13.55 | 8.61 6.35 8.90
Joint DE-MBIR | 9.68 0.30 | 13.69 | 11.80 | 10.59 | 11.70

=Conclusions:

With comparable noise level in 70keV monochromatic images

1. Joint DE-MBIR significantly reduces noise compared to FBP and
Incomplete DE-MBIR in material density images.

2. Joint DE-MBIR improves overall in-plane resolution by roughly 90% over
FBP, and 40% over Incomplete D46E-MBIR.




Clinical Results: Monochromatic at 70keV

—Denoised

Thjcomplete DE-

JoRek oo

=Joint DE-MBIR achieves:

* resolution improvement
« contrast improvement

47 -
* matched noise level in mono images WL 40HU, WW 400HL



Clinical Results: lodine

Denoised Incomplete DE-
FBP : MBIR

=Joint DE-MBIR achieves:

« contrast improvement

* matched noise level in mono images




Clinical Results: Water
Degqjsed

. 9
B ™,

=Joint DE-MBIR achieves:

* resolution improvement
* noise reduction
* bone improvement

* matched noise level in mono images WL 1000mg/cc, WW 300mg/



Security Imaging
Sondre Skatter, Morpho Detection
Simon Bedford, Astrophysics
Jordan Kisner, Purdue

Eri Haneda, Purdue



Why could MBIR be valuable in Security
Applications?

» Reduced artifacts
* Reduction of streaks => Better segmentation
* Reduced medal artifacts
* Reduced beam-hardening artifacts

= Reconstruction from non-classical measurements
« Limited angle/limited view
* Fixed gantry systems

 Multimodal/nonlinear measurements FBP reconstruction
— Dual or poly-energetic
— Integrated projection/scatter from active/passive sources

= Incorporation of more physical real-world constraints
* Material characteristic
* Image structure
» Integrated reconstruction and processing (reconstruction and segmentation)

51



Microscopy for Material Science

Venkat Venkatakrishnan, Purdue
Larry Drummy, AFRL
Marc De Graef, CMU
Jeff Simmons, AFRL



Electron Microscopy Imaging

 2-D Charac.:terization of | Bright Field
samples (biology, material ‘
science)

* Various modalities (Bright
Field, Dark Field etc.)

Biological sample* Aluminum nanoparticles®*
Dark Field

STEM

Aluminum nanoparticles™*
*http.//bio3d.colorado.edu/imod/doc/etomo Tutorial.html 53
**L.F. Drummy, AFRL



High Angle Annular Dark Field (HAADF) STEM
Tomography

Electron beam

Z I

R’:\\\
/ N
\
\“\

/
v

Specimen

High Angle
Scattered —
Electrons

Annular Detgctor

_

Tilted
Specimen

" Acquisition
= An electron beam is focused at a point on
the sample.
= An annular ring detects elastically scattered
electrons, but angle is small.

* Geometry
» Electron beam is scanned across sample
= Sample 1s tilted in one axis
= Results in 2D parallel beam data
* Forward model
= Dark field => emission equations
" Bright field => transmission equations
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HAADF and BF Measurement Models

IO
Attenuation of unscattered beam
dz Y1 I(z)=1, exp[—J.,u(r)dr)
0
1,21(z)
W '
I 1, Attenuation of scattered beam
Scattering coefficient: a, _ 1(z)s(z)
dz
s(z)=0(z)N(z) . .
I =\|1(z)s(z)dz=1,]s(z)dz
Attenuation coefficient: {[ ( ) ( ) 0'([ (2
u(z) So we get
T
. 1
s(z)dz=-"
0 1,
T I
p(z)dz = —log(l—T)




MAP Cost Function for HAADF Problem

= MAP cost function 1s given by

2 1 p
A + —p Z wij Xl- — xj‘
£ PO ijres

x20  I,u

N,—1
A L
X =arg mlnmm{z §| |yk -1, Ax—ul
k=0
N,-1 B
subject to the constraint H I, =1,
k=0

Model-based reconstruction allows use to estimate unknown
parameters for offset, gain and noise.
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Titanium Dioxide Nanoparticle* (x-y slice)

HAADF Data At Zero Tilt
» Polystyrene 50 g | 19900
functionalized 100] 9800
titanium dioxide £ 150 9700
nanoparticles i 200 9600
250 [ 9500

e 87 tilts from -70° to 300 9400
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3-D Reconstruction (x-z slice)

Reconstructed
slice
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3-D Reconstruction (x-y slice)

Impact of varying p in prior

p=2
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TiO, Reconstruction 3D Rendering*

60

*Lawrence Drummy, AFRL



Real Al Sphere Data Set* (x-y slice)

~ x10°

* Aluminum spheres 200

in a carbon support
(600 nm thick)

~
=
C

p—"
=

e 65 tilts from -70°
to +70°

FBP using IMOD
*Lawrence Drummy, AFRL

SIRT using IMOD




Real Al Spheres (x-z slice)

200 400 600 800 1000

X X (hm)

FBP using IMOD SIRT wsing IMOD MBIR



Bright Field (BF) Electron Tomography

Electron beam Tilt v
. y Lo u
=Problem: 3-D reconstruction of BF ,/<~x \
images is normally not done due to "

anomalous effects of Bragg scatter.

*Medium term approach: Detect / &
Tilted
Bragg scatter as part Of the Transmitted Specimen
reconstruction process forward electrons
. Bright
modeling. 4o
detector

*ong term approach: Model Bragg

scatter signal in forward model. Measurements

effected by
Bragg scatter

63



MBIR Reconstruction with Bragg Rejection

(ff,d)=argmin{%im (s—ar—a)ya,)+ 3 wl-,-p(ﬁ—f,-)}

f20.d {i,jyex
) \ J

) |
Forward Model With Bragg Prior Model
Rejection

f: Linear attenuation coefficients to reconstruct (nm™)
g =—log ()’i )

d=- log(ﬂ’D)

A, : Measured BF signal (counts)

A, Unknown Dosage (counts) - can be estimated

2 <T Eliminate the effect of Bragg
Pro=y paisr ' anomalies

|

Noise variance

(scaled) for measurement i

i *
.th . . .
A, : i" row of forward projection matrix

M :Total number of measurements 64



Reconstruction With Bragg Correction*®

Reconstructed
slice

MBIR Without Bragg Correction MBIR With Bragg Correction

65

*Lawrence Drummy, AFRL



Bragg Selector and Corresponding Measurement

Bragg
Scatter
detected

Bragg
Scatter
detected

Tilt +70



4-D CT Imaging of Materials

=Objective: Reconstruct a continuously time
varying object at high time and space
resoluticx)_ga.y

Axis of

Source rotation Detector X-Ray
4 Source
X-Ray— | 1 1 1 1
— — 2_. = Iy
e _D O
_— _— Cross —
—\_ |1 /7 secon | | | |
X
i4>y Detector
v
Time Varying

Object
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Using MBIR for Time-Space Reconstruction
*MBIR allows for:

* Reconstruction using any sampling points in time and space
* Projections at any time, angle, location

=Advantages

« Reconstructs at higher (any) time resolution.
« Accounts for exact time of projection

* Increases envelope of experimental possibilities

X-Ray

Source Projections acquired
2EE

over entire

experiment . _
Rotate % :O » = —> x, High Time
object O Y, > —> x, Resolution
Y3 > —> X; Reconstructions

EAK

Detecto
r
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MAP Reconstruction Problem for 4-D CT

*Reconstruction is computed by minimizing cost function

A : 1
imagmin 3 Sn-aals X e (u-x)+ X (n-x)

X k sample times i,jeQ i,jeQ,
| J v J v ]
Forward or Model whi '
orwar Prior Model which Prior Model which
Model models spatial models temporal
correlation correlation

x — Reconstructed object

y — Projections

A — Diagonal matrix which models the noise
A — Forward projection matrix

Q — Set of all neighboring voxels in space

Q2 — Set of all neighboring voxels across time
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3-D CT Reconstruction: 2-D space 1-D Time*

Low Time Resolution MBIR at 4 times the
FP recnstructio time

B

Both reconstructions use 540 projections
acquired over 3 compleﬂ’)me rotations of the object
*Peter Voorhees, Northwestern University



Plug & Play Models

Venkat Venkatakrishnan, Purdue
Brendt Wohlberg, LANL



MAP Inversion Framework

X argmxin{l(y;x)+ Bs(x)}

l(y;x) = —logp(y|x) - Forward model
S(x) = —logp(x) - Prior model

=Question: How to mix an match new models?
e Many new priors: kSVD, bi-lateral filters, non-local means, BM3D, TV, etc.
* Integrating new priors with sophisticated forward models is difficult!

= Approach
e Use ADMM to split forward an prior terms.
* Allows for independent implementation of prior and forward models.
e Allows for the use of priors without an explicit optimization formulation.

*S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstgin, “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, Jul. 2011



Plug-and-Play Priors Algorithm

Initialize v=x,u = 0

Repeat until convergence{

1.x

=V—u
X ( ;A) //Tnvert foward model
2.V =
V& ( ) //Denoise v Plug in any prior -
> only redesign
3.u<u . .
the denoising
} routine !

*Where F(.) and H(.) are independent software modules:

F(y,%;A)=arg min{l(y;x) + %”x - 52||2} - Model-inversion operator

H (%0, )=arg min{ ! &= x| + s(x)} - Denoising operator
x 20 73
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Data : Phantom and Sinogram

Phantom Sinogram
250 .60 U+ 14000
- {200 -40 3500
oo - 3000
(150 5 42500
c 0 |
= - 12000
=

20 1500

1000
500

40

60

20 40 60
Displacement
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Minimum RMSE Reconstructions




Root Mean Squared Error

Denoising Algorithm/
Prior

K-SVD 2.32
BM3D 2.51
PLOW 2.70
TV 3.42
q-GGMRF 4.46

Discrete Reconstruction 1.32
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Convergence Plot

35 '
—kSVD
30! —BM3D
—PLOW
25A _TV |
gqGGMRF
o0l —Discrete |
15¢
10+
5,
0 1 1
0 50 100 150

lteration number
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Comparison of convergence of ADMM with
traditional approach (ICD with g-GGMRF [4])

35

—=|CD
30 — ADMM |
25
w 201
0))]
=
X 15/
10
5 e I ——
0 ! !
0 50 100 150

lteration number
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Major directions
in Model-based Imaging

* Forward modeling: Account for complex nonlinear
parameters and models

* Prior modeling: Account for properties of real
Images

= Community: Create interdisciplinary teams to
solve high impact problems
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