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Summary/Future work 

• Summary 

– We have implemented and accelerated a constrained conjugate gradient algorithm 

(CCG)* using the adjoint method for computing the error gradient and incorporating 

the capability to use ray weighting. 

– We are investigating ray weighting by 

• powers of ray transmission 

– There is theoretical justification for setting the power to 1** 

– We have found that values greater than 1 sometimes yield more uniform 

reconstructions for homogeneous materials. 

– We are still determining appropriate limits for the power and appropriate 

circumstances for using ray weighting 

• sigmoidal functions of ray transmission 

– Do not work as well as powers of ray transmission 

• Future work 

– Demonstrate reduction in feature space size 

– Assess robustness across different types of clutter, threats, etc. 

*    D. M. Goodman, E. M. Johansson and T. W. Lawrence, “On applying the conjugate-gradient algorithm to 

image processing problems,” Multivariate Analysis: Future Directions, Elsevier Science Publishers, 1993. 

**  See pages 536-7 and Appendix A of  K. Sauer and C. Bouman, “A Local Update Strategy for Iterative 

Reconstruction from Projections,” IEEE Trans. Sig. Proc., Vol. 41, No. 2, pp. 534-548, Feb. 1993. 
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Non-

Threat 

Non-

Threat 

Goal of this 

Iterative Reconstruction Work 

• Show that iterative reconstruction techniques can reduce 

the effects of containers and concealment, and thus 

improve probability of detection / probability of false alarm. 

• We sometimes refer to this spread as a cloud 

Analytical Reconstruction Iterative Reconstruction 

“Bare” 

Material 

Effects of Containers 

Effects of Concealment 

Feature 1 Feature 1 

Feature 2 Feature 2 

Features can include x-ray attenuation coefficients, Zeff, density, texture, kurtosis 
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Error and Its Gradient 

• Projection difference error is given by 

 

 

where E is the error, m is attenuation, r is position, M is the number of rays, m is the 

ray index, w is the ray weight, I is the ray intensity, s is the position along the ray. 

• This error yields a Frechet derivative for every voxel of the form: 

 

 

 

where Pi,m is the projection of the ith voxel on the mth ray,          is the adjoint ray 

intensity, and the product                is a constant for each position s along ray m.  See 

Appendix for the derivation of this Frechet derivative. 

• This Frechet derivative can be used in a conjugate gradient algorithm. 
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Ray Weighting Policies 

• Ray weighting policy is being investigated 

– Weighting by ray transmission to a power 

• From the literature 

• Works best so far 
 

 

 

 

– Weighting by sigmoidal function of ray transmission 

• Trying something different 
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Example of Streak Artifacts 

and Their Reduction 

                                                            CCG+ 

Analytic                  CCG              Ray Weighting* 

Window 

Max at 

Max 

Steel 

Window 

Max at 

Mean 

Steel 

Window 

Max at 

Max 

Jelly 

* Using ray transmission power weighting.  Power = 2.5 
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Power Law Ray Weighting 

Examining Jelly 

Power = 0         Power = 0.5         Power = 1         Power = 1.5        Power = 2        Power = 2.5       Power = 3 

Analytic Reconstruction 

All of the images on the bottom row have the same imaging window 
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Power Law Ray Weighting 

Examining Iron 

Power = 0         Power = 0.5         Power = 1         Power = 1.5        Power = 2        Power = 2.5       Power = 3 

Analytic Reconstruction 

All of the images on the bottom row have the same imaging window 



LLNL-PRES-562193 VG-9 

Sigmoid Ray Weighting 

Centered at 0.3 
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Sigmoid Ray Weighting 

Centered at 0.5 
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Ray Weighting Does Not 

Always Improve Results 

Notes: 

• Iterative reconstruction without ray 

weighting moves mean attenuation of 

water sample 0.3% closer to 1000 

than analytic reconstruction and 

decreases Standard Deviation of the 

voxels by 25%. 

• Ray weighting does not improve 

these results. 

 

Analytic                       Power = 0                     Power = 1                     Power = 2                     Power = 3 

Image window is 621-1258 

Water 

In 

Plastic 

Bottle 

Glass 

Metal 
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Summary/Future work 

• Summary 

– We have implemented a fully constrained conjugate gradient algorithm (CCG)* using 

the adjoint method for computing the error gradient and incorporated the capability to 

use ray weighting. 

– We are investigating ray weighting by 

• powers of ray transmission 

– There is theoretical justification for setting the power to 1** 

– We have found that values greater than 1 sometimes yield more uniform 

reconstructions for homogeneous materials. 

– We are still determining appropriate limits for the power and appropriate 

circumstances for using ray weighting 

• sigmoidal functions of ray transmission 

– Does not work as well as powers of ray transmission 

• Future work 

– Demonstrate reduction in feature space size 

– Assess robustness across different types of clutter, threats, etc. 

*    D. M. Goodman, E. M. Johansson and T. W. Lawrence, “On applying the conjugate-gradient algorithm to 

image processing problems,” Multivariate Analysis: Future Directions, Elsevier Science Publishers, 1993. 

**  See pages 536-7 and Appendix A of  K. Sauer and C. Bouman, “A Local Update Strategy for Iterative 

Reconstruction from Projections,” IEEE Trans. Sig. Proc., Vol. 41, No. 2, pp. 534-548, Feb. 1993. 
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Appendix A: 

Accelerating CCG 

Outline 
• High Level Overview of Conjugate Gradient Reconstruction 

• Model Pruning: a Minor Tweak for Speed 

• Error Approximation: a Major Tweak for Speed 

• Approximating the Error 

• Caveats 

• Example: Clock Phantom 

• Example: Clock-like Data 
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High Level Overview of  

CG Reconstruction 

• Generate a model to fill space (blobs, regular voxels, pieces). 

• Incorporate a priori information (or set everything to zero). 

• Determine interactions between model and all rays. 

• Perform an iteration of the conjugate gradient method: 

– Execute forward model for each ray 

– Determine mismatch between forward model and data for each ray. 

– Distribute error gradient to parts of model that interact with ray. 

– Generate appropriate direction given error gradient, regularization, 

and prior descent direction. 

– Perform line minimization to find minimum error in that direction. 

– If error is small enough, exit, otherwise repeat conjugate gradient 

iteration. 

• Generate the output image. 
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Model Pruning:  

a Minor Tweak for Speed 

• In many cases there are many voxels in the model that are intersected 

with un-attenuated rays.  These regions: 

– Waste computational resources 

– Are a potential source of error 

• These voxels can be identified by examining the ratio of unattenuated 

rays / attenuated rays for each voxel. 

– If the ratio is larger than a user defined threshold (we use 0.25) the voxel 

attenuation is set to zero and frozen there. 

• For compact objects this acts like a convex hull.  For objects broken into 

pieces the regions between pieces may be 

eliminated. 

• A threshold separating attenuating 

vs. non-attenuating rays must be set. 
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Error Approximation: 

a Major Tweak for Speed 
• One iteration of the Conjugate Gradient Algorithm in a nutshell: 

 

 

 

 

 

• Major effort is the determination of ak (the line search).  It can require many 

evaluations of the error.  Computing error for a system with 1E6 rays (1000 

projections of 1000 data points each) on a 1E6 voxel grid can require > 2E9 

operations. 

• Approximating the error can reduce the effort to less than that required for 

two full evaluations of the error (a speedup of approximately 20 times, 

although the result is non-deterministic).  Our approach to approximation is 

to choose a random subset of the rays to approximate the error. 

– We use a different subset for each iteration.  We have been using a subset with 

sqrt(original vector length) rays. 

– This technique is related to conjugate gradient methods with inexact searches *. 
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* D. F. Shanno, “On the convergence of a new conjugate gradient algorithm,” SIAM J. Numer. Anal., Vol. 15, No. 6, pp. 1247-57, December 1978. 
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Approximating the Error 

• The error we are using for CT reconstruction is the squared projection difference 

error given by 

 

where E is the total error, m is attenuation (essentially the x vector of the conjugate 

gradient), r is position, M is the number of rays, m is the ray index, w is the ray weight, I is 

the current modeled ray intensity, sfinal is the detector position, and Iobserved is the data we 

are trying to match. 

• The approximate error we use for CT reconstruction is the squared error of a 

random subset of the rays that have at least 0.1% mismatch between the 

modeled ray intensity and the detected ray intensity. 
– The value of the approximate error does not have to be close to the value of the true error.  We need 

the minimum of the approximate error along the search direction to be near the minimum of the true 

error. 

• One full error computation must be performed before the line search in order to 

generate the gradient for the entire problem. 

• The majority of the implementation effort is in rewriting the error computation to 

deal with a set of selected rays and the selection of the rays themselves. 

       



M

m

finalobservedmfinalmm sIsIwrE
1

2

,
2

1
m



LLNL-PRES-562193 VG-18 

Caveats 

• Near the converged solution it becomes difficult to select 

an appropriate set of rays with which to approximate the 

error. 

• At this point it is reasonable to switch to the full error 

conjugate gradient. 

• Depending on when this switch occurs it may 

significantly reduce the time savings of this method. 

• The same data will yield different results depending on 

which random sets of rays are used in the line search.  

This can be alleviated by switching to the full error 

conjugate gradient as the problem nears convergence. 
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Example: Clock Phantom 

• Clock Type Phantom 

• Dim circles have 

attenuation value 0.2 

• Bright circles have 

attenuation value 1.0 

• Region is 4 units on a 

side. 
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Approximate Error 

Line Search 
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MicroCT References 

Example 

• Reconstruction of a CT slice with reference materials. 

• 18 CCG iterations 
– Once with full error 

– Three times with approximate error 

• The plots show the full error (computed at the beginning of each 

approximate error line search and at the end of the reconstruction) 

– Approximate error results took 1/10th the time to generate. 

• Factor of 10 difference is actually smaller than usually observed 

because of the large amounts of empty space in the image eliminated 

by model pruning. 

Reconstructed image of CT references 

Aluminum 

Graphite 

Delrin 

Water 

Ethanol 

Teflon 
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MicroCT References 

Example 

There are subtle differences 

between the reconstructions that 

are evident when viewed carefully.  

An example is the very slightly 

sharper edge on the Delrin sample 

seen in the graph. 

Full Error Approximate Error 

Delrin 

Water in plastic container 



LLNL-PRES-562193 VG-23 

Appendix B: 

Derivation of Error Gradient 

Outline 
• One Dimensional Ray Equation 

• Frechet Derivative and Variations 

• Adjoint Ray Equation 

• Manipulations to get Frechet Derivative 

• Evaluation of Frechet Derivative 

• Finite dimensional cases 
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One Dimensional Ray 

Equation 

• Position along the ray is represented by s. 

• Intensity at any point along the ray is represented by I(s). 

• Attenuation at any point along the ray is represented by m(s). 

• Initial Intensity I(0) = I0. 

• One dimensional ray equation is: 

 

 

• Define the Error as: 

 

 

• What we really want is the gradient of the error with respect to 

the attenuation distribution, the Frechet derivative. 
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Frechet Derivative and 

Variations 

• The Frechet derivative, when integrated with the variation in 

the attenuation, gives the variation of the error (DE) : 

 

 

• The variation of the ray equation is given by: 

 

 

• And the variation of the error is given by: 
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Adjoint Ray Equation 

• The ray equation gives forward propagation.  The adjoint ray 

equation gives backward propagation: 

 

 

• The source term 𝑆 (s) is, in effect, an initial condition of 

 

 

• So the variation of the error is given by 
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Manipulations to get 

Frechet Derivative 

• We use the identity: 

 

 

• Realizing we can disregard the right hand term of the identity because it is 

zero at the endpoints we find the variation of the error: 

 

 

• Substituting from the variation of the ray equation we find the variation of 

the error is now in a form from which we can easily extract the Frechet 

derivative: 

 

 

• The Frechet Derivative is thus: 
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How Can We Evaluate The 

Frechet Derivative? 

• For simplicity consider a uniform attenuation distribution.  Over the course 

of the forward propagation the intensity at any position is: 

 

 

• Suppose the result of the forward propagation is not the same as the 

observed intensity.  The difference is the initial condition on the back 

propagation. 

• Over the course of back propagation the intensity at any position is 

 

 

• The resultant product at any position is constant: 

 

 

• This works for ANY distribution of attenuation along the ray.  And there is 

no need to actually do the back propagation. 
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Finite Dimensional Case 

• If the distribution to be found is represented by the sum of 

basis functions fi(s) multiplied by parameters pi: 

 

 

• Then the finite dimensional Frechet derivative is given by 

 

 

 

• Considering the fact that product of the first two terms in the 

integral are constant, the finite dimensional Frechet derivative 

is the projection of the ray through the basis function, Pi, times 

a constant. 
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