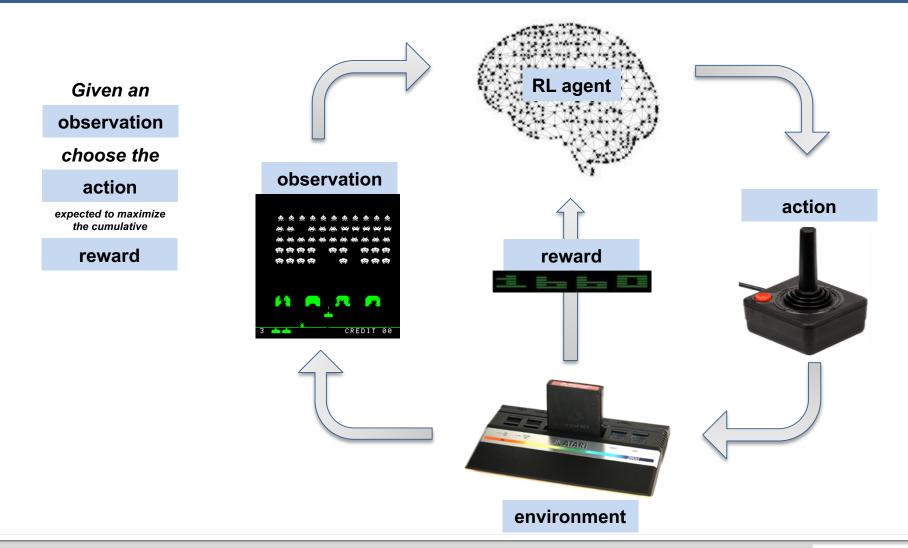
Short tutorial on deep reinforcement learning

Brenden Petersen

LLNL-PRES-774209

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

What is deep reinforcement learning?



What can you do with DRL?

Play video games better than a human

Observations

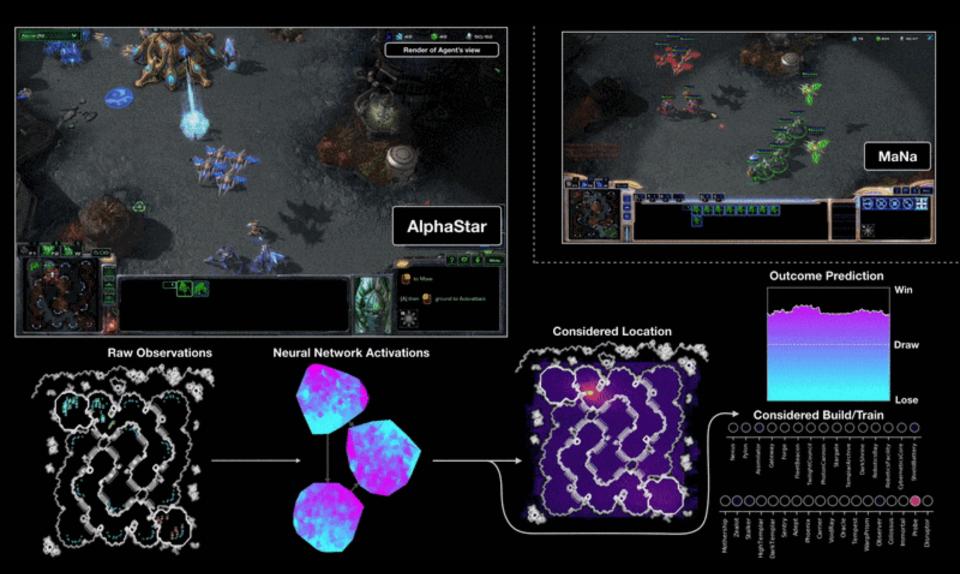
Pixels

Actions

{9 directions} x {Fire}

Reward

Game score



What can you do with DRL?

Play board games better than a human

Observations

{19 x 19 grid} x {B, W, Empty}

Actions

{19 x 19 grid}

Reward

1 (win) 0 (otherwise)

dance?? What can you do with DRL?

Teach a simulated robot how to walk

Observations

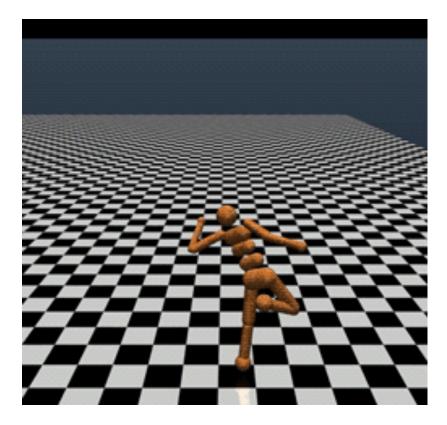
Joint positions, angles, and velocities

Actions

Joint torques

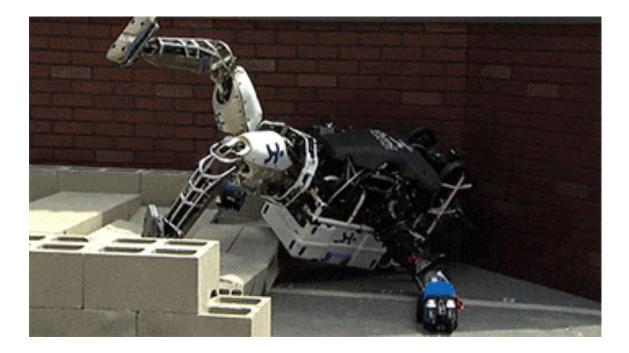
Reward

Distance travelled



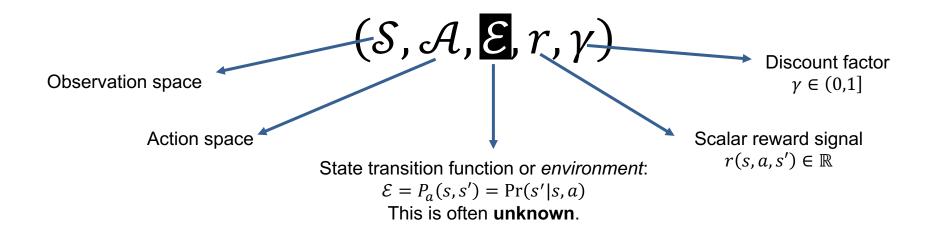
What can you do with DRL?

- Teach a real robot how to walk
 - or perhaps not...



Formulating an RL problem

 An RL problem is formulated as a Markov decision process (MDP)

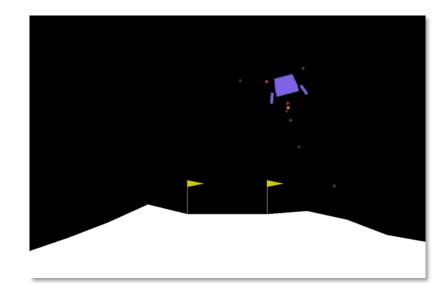


MDPs satisfy the Markov property:

 $\Pr(s_{t+1}|s_0, a_0, s_1, a_1, \dots, s_t, a_t) = \Pr(s_{t+1}|s_t, a_t)$

Demo – LunarLander

- Goal: Get to the landing pad without crashing
- Observation space:
 - x, y coordinate
 - x, y velocity
 - Angle w.r.t. horizontal
 - Angular velocity
 - Left/right ground contact
- Action space:
 - Main thrusters (up): [0, 1]
 - Side thrusters (left/right): [-1, 1]
- Reward:
 - +100 for landing safely
 - -100 for crashing
 - Small penalty for fuel consumed
 - Bonus/penalty for moving closer to/further from goal



Key concepts & terminology

The return is the cumulative discounted reward

$$R = \sum_{t=0}^{T} \gamma^t r_t$$

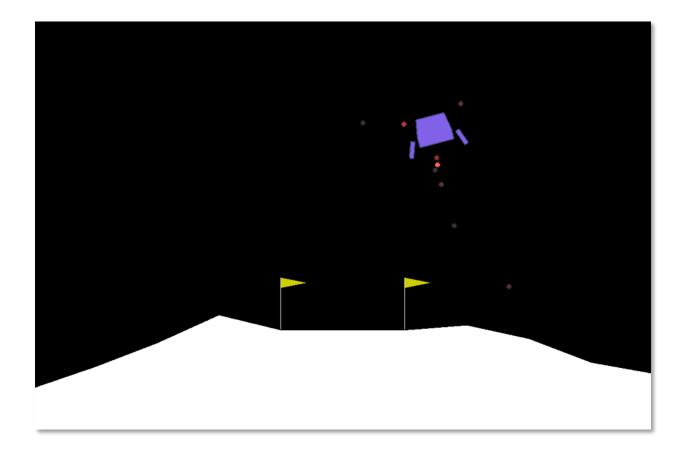
• A **policy** defines a mapping from state to action

$$\pi: \mathcal{S} \mapsto \mathcal{A}$$

• A value function estimates "how good it is" to be in a certain state

$$V_{\pi}(s) = \mathbb{E}[R|s,\pi]$$
$$Q_{\pi}(s,a) = \mathbb{E}[R|s,a,\pi]$$

How's our LunarLander doing?



How do you learn an optimal policy?

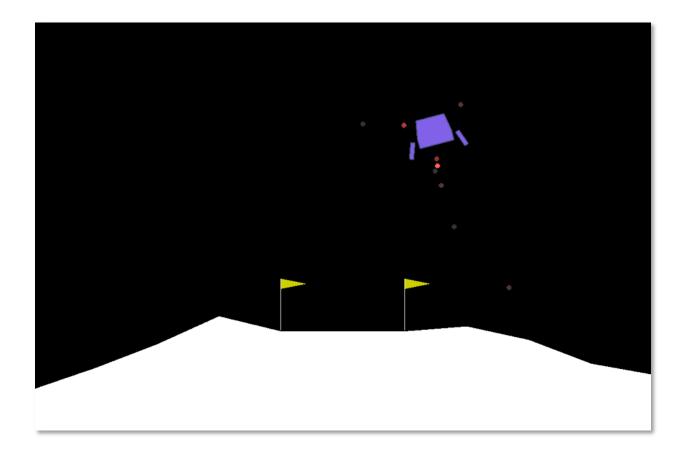
 If you can estimate the Q value, the optimal policy is to select the action with the largest Q value

$$\pi^{\star}(s) = \arg\max_{a} Q(s, a)$$

 We can learn a value function by iteratively updating our current estimate based on the reward we received

$$\Delta Q \sim Q(s, a) - \left(r + \gamma \max_{a} Q(s', a)\right)$$
 what you thought you'd get what you got

Are we landing yet??



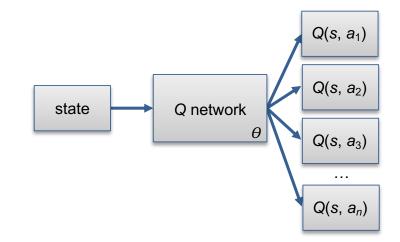
Lawrence Livermore National Laboratory

From tabular to deep RL

- Tabular (traditional) RL:
 - Learn the Q value separately for every state-action combination
 - Requires discrete states
 - Requires discrete actions

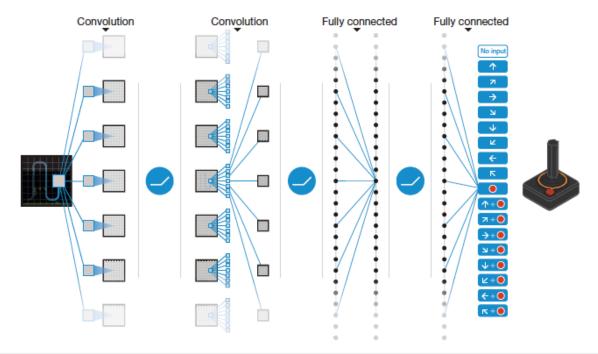
	a ₁	a ₂	a 3	a ₄	a 5	a 6	a ₇		a _m
s ₁	1.21	2.23	1.42	2.42	5.32	3.14	6.37		1.30
s ₂	4.56	3.33	1.43	3.16	2.67	2.53	2.22		3.16
S 3	4.46	5.66	2.16	3.45	2.53	6.35	2.64		3.56
S 4	4.77	3.16	7.77	3.54	9.01	6.46	3.26		4.26
								••.	
s _n	8.11	2.22	8.00	7.64	7.66	5.66	5.44		9.03

- Deep RL:
 - Learn a *function* that maps states to *Q* values
 - Works for continuous states
 - Requires **discrete** actions



Playing Atari with DRL: Problem setup

- States = sequence of 4 images
- 18 possible actions
- Q function network architecture:



Space Invaders

Breakout

Frostbite

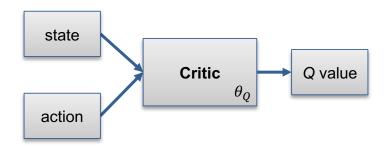
Playing Atari with DRL: Algorithm

Alg	gorithm 1 Deep Q Networks (DQN)						
1:	Initialize replay buffer \mathcal{D}						
2:	2: Initialize Q network with random weights						
3:	for episode $= 1, M$ do						
4:	for $t = 1, T$ do						
5:	With probability ϵ select random action						
6:	otherwise select $a = \max_a Q(s, a; \theta)$						
7:	Execute action a in environment; receive s', r						
8:	Store transition (s, a, s', r) in \mathcal{D}						
9:	Sample minibatch from \mathcal{D}						
10:	Perform gradient step: $\nabla_{\theta} \frac{1}{2} \left[Q(s, a; \theta) - (r + \gamma \max_{a} Q(s', a; \theta)) \right]^2$						
	· · · · · · · · · · · · · · · · · · ·						
	Tabular:						
	$\Delta Q \sim Q(s, a) - \left(r + \gamma \max_{a} Q(s', a)\right)$						

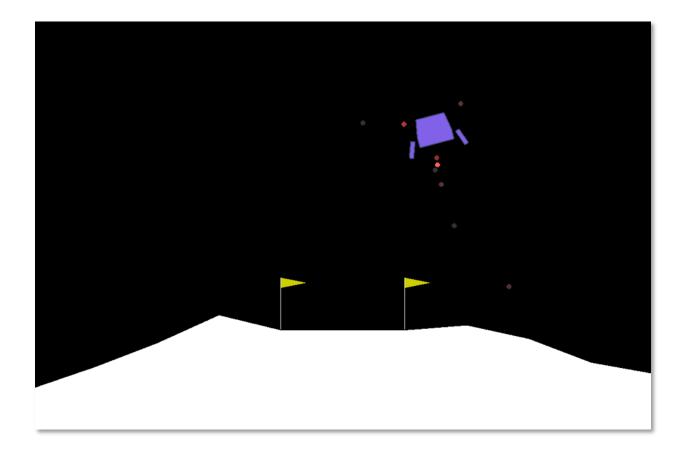
What about continuous action spaces?

- One network selects an action
 - Policy network or "actor"
 - Updated using the policy gradient theorem

- Another network evaluates the action
 - Q network or "critic"
 - Updated the same way as DQN



Have we converged?



Want to learn more?

- LLNL Reinforcement Learning reading group
 - Wednesdays 2 3
 - B170 or B155

- OpenAl Spinning Up
 - Web-based "fast-track to DRL" tutorial
 - spinningup.openai.com

Sutton & Barto

 Free online PDF of textbook

