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Success of LLNL and our partners’ missions requires 
timely development and deployment of diverse materials 

2”

Plastic scintillators Energetic Materials Porous Materials AM components Optical Materials

Our group focuses on accelerating materials development, optimization and deployment, 
while providing performance and compatibility predictions during the lifetime of the 
materials



Materials discovery, development and deployment 
requires many iterations



Artificial Intelligence has made tremendous progress in 
recent years

Self-driving cars Smart Home

Personal Assistants

Face Recognition

games



Application of ML to materials science requires 
overcoming many challenges

Materials Science Challenges

• Materials Discovery
• Synthesis & Performance 

Prediction
• Rapid Materials Attribute 

Characterization and Analysis
• Materials Process, Property, 

Performance Correlation
• Aging and Lifetime Prediction
• Certification & Qualification

M.L. and Data Science 
Challenges

• Explainability
• Feature Engineering
• Small Data
• Confidence Level
• Generalizable ML
• Multiple Data Source 
• Domain Knowledge 

Incorporation

Optimization of 
existing tools

There are preliminary results to show ML can help Materials Science

Implementation of 
Existing Tools

Optimization of 
existing tools

New tool 
development



Material attributes dictate performance

mechanical

compression testing

impacts

peak stress
1200 1000

800 400

regression

Materials attributes: particle size, morphology, surface 
area, voids, surface texture, aggregation, density, etc.



Automated image collection with Zeiss SEM allows for 
rapid collection of thousands of images

1 stub creates ca. 800 images

We typically sample 4 stubs, resulting in 
3200 images per samples

Presenter
Presentation Notes
If we perform clustering on these images how would they cluster? Would more homogeneous samples cluster more closely compared to more heterogeneous samples?



We are using computer vision tools/ML and Deep Neural 
Network approaches to study SEM images
Traditional Approach:
Computer Vision/ML

Deep Neural Network Approaches:
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Corner Detection

Original SEM Image
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Corner Distance Metric

Regression Model

CV tools can extract quantifiable feature values
and ML models can be used to correlate to performance

Data Source

80k SEM images
Labeled with peak stress data

regression

ca. 300 features
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Bag of Visual Words Approach

Bag-of-visual-words approach:
-Compute well known features + descriptors (e.g. scale-invariant feature transform (SIFT))
-Cluster descriptors into k bins (k-means clustering)
-The histogram of these bins (the bag-of-visual words) now describes the image and
can be used for classification or regression

-This technique has been successfully used to classify materials from images [1,2,3]

SIFT key-points detected on 
SEM image

1. DeCost, B. L.; Holm, E. A., Characterizing powder materials using keypoint-based 
computer vision methods. Comput. Mater. Sci. 2017, 126, 438-445.
2. Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D., Image driven machine learning methods 
for microstructure recognition. Comput. Mater. Sci. 2016, 123, 176-187.
3. DeCost, B. L.; Holm, E. A., A computer vision approach for automated analysis and 
classification of microstructural image data. Comput. Mater. Sci. 2015, 110, 126-133



SEM image features- Domain knowledge incorporated

Try features that specifically relate to particle sizes 
and textures:
• Canny edge detection (count “on” edge pixels)
• Fourier/frequency analysis
• Binarized Statistical Image Features (BSIF)4

Implemented in Python

4. Kannala J & Rahtu E: "BSIF: binarized statistical image features", ICPR 2012.

BSIF



Material performance regression

 Numerous performance metrics are available.  We chose peak-stress of the stress-strain curve as 
our “label”.

 Many regression models can be used:
• Linear  

Support Vector
Gradient Boosting
Random Forest
others

 We chose random forest due to its versatility, its ability to provide accuracy without tuning meta-
parameters, and its ability to provide feature importance once trained

 Cross-validation performed with leave-one-out protocol—For each lot, train on everything else 
but that lot, then predict performance for that lot



Material performance regression

Material performance predictions per lot

Overall, BSIF had the best performance as measured by 
RMSE.  (BSIF: 252 psi, BoVW: 390, KS: 280)



Deep learning for SEM/image analysis

SARA

Compression Peak Stress
= 1500 psi

70k images (20+ lots) Pretrained on ImageNet

Other examples of inputs
• CT (25 samples, 145K images)
• Surface area
• Particle size analysis
• density
• Etc.

1. DenseNet
(CNN)

2. Inception
(CNN)
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 We train a deep learning network (Dense Net) to give 
the estimated corrected peak stress (PS) for a patch.

- The input is a single SEM patch from Atlas.
- The output is an estimated regression value (peak stress) or 

classification classes (high or low).

 We use a leave-one-out cross validation where a single 
batch is left out and used for validation. We do this n 
times for each batch.

- This allows us to estimate performance for unseen novel 
batches. 

 We combine the scores over all patches to create an 
estimated PS per batch. 

 We tried some variations on input images to try and 
improve performance.

Training and Methodology

High Low 1200

Presenter
Presentation Notes
what regression methods are used?
What classifiers are used?



DNN can be used to create empirical models to 
predict performances

L M
High Peak Stress

H I
Low Peak Stress

New lot

?

With this model, new lots can be compared to existing or best in class materials 
prior to extensive testing!

classification

Get to it later

Examine  Further



DNN approach performs better than traditional ML

Pros:
DL RMSE: 193 psi
BSIF RMSE: 270 psi

Cons:
Difficult to understand 
(i.e. how to relate 
features to physical 
attributes?)

regression

Material performance predictions per lot

(All testing performed with leave-one-out cross-validation)



 Pro: CT can reveal information from the 3D structure of the materials

 Pro:  Still relatively inexpensive, and multiple lots can be measured at once 

 Con: CT data is lower resolution than SEM image data; loses fine detail

 Con: 3D feature extraction is less developed than 2D presently; must find 

suitable features for classic machine learning; won’t have ImageNet 

equivalent for deep-learning

 Likely, features from CT will augment those from SEM images

18

Computed tomography

Sample CT visualizations

 Computed Tomography (CT): 3D reconstruction 

of material density (in 2D image slices) by way of 

radiograph projections

 Like SEM, data is relatively inexpensive to 

acquire



 Machine learning with “classical” computer vision features and regression has been shown to 
yield promising results for saving time and resources with materials evaluation

 Deep learning currently outperforms the “classical” techniques in terms of prediction accuracy, 
but may be more difficult to interpret

 We plan to evaluate other key performance metrics in the future and to correlate image/raw-data 
features with physically measured quantities

 Synthetic data from generative adversarial networks are expected to improve accuracy and help 
to understand physical attributes from data

 We will use 3D information from computed tomography to augment our predictive capabilities

The end goal is not only produce a predictive performance model, but to enhance our fundamental 
understanding of the materials so as to produce higher quality feedstock in less time.
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Summary and ongoing work
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