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Electromagnetic (EM) imaging is gaining importance as an effective
method to inspect low-loss dielectric materials and fluids.

Source NDE Oil CO2

(mm) (cm - m) (m - Km)
1- 100 GHz 100 MHz- 1 GHz 1- 100 MHz

Benefits of the imaging method:
• Multi-scale applications,
• Non-iterative kernel based imaging,
• Kernels provide contrasting sensitivity of EM waves to different properties.
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EM forward 
propagation

EM back-
propagation

Sensitivity 
kernels

Kernels used for imaging and form 
basis of tomographic inversion.

Basic approach
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Adjoint source computed 
from forward fields

Kernel computed based on interaction 
between forward and adjoint fields.
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Schematic Kernel Construction

(after Tape et al., GJI 2007)

Adjoint source construction:
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Adjoint inversion method

LLNL-PRES-773937

• Forward equation:

! and "# are the electric and magnetic fields, js is the source current density [1].  

• Adjoint  equation:

js
$, !$ and "#$ are the adjoint counterparts,   js

$ can be constructed by different ways [2].
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• Finite frequency sensitivity kernels:
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[1] Morency, C. “Electromagnetic wave propagation based upon spectral-element methodology”, (2018) submitted to Geophysical Journal International.
[2] Mukherjee, S., Morency, C., “Finite frequency sensitivity kernels for electromagnetic wave propagation based on adjoint methods” (in preparation).
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Source imaging
Geometry 
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Model Geometry: Source detection

• Dielectric medium : !" =3, $=0.02 S/m.

• Spatial domain: 10 m × 7 m
• Locations:

• Source (3 m,3 m)
• Receiver (7 m,3 m)

• Absorbing boundary conditions  
imposed on left, right and top 
boundaries.

• Bottom boundary is assumed to be a 
reflecting boundary

Reflecting boundary
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Source imaging
Radargram

Electric fields recorded by the receiver array.
• direct interaction.
• reflected fields from boundary.

Adjoint source

TotalDirect Reflected

Direct

Reflected

js!(#, %)
Adjoint source :
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Source configuration
Kernels

TotalDirect Reflected
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The kernels highlight the primary EM wave path. 
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Application: NDE of composites 

• Composite: Light weight, High stiffness, strength..
• Industries: Aerospace, automotive, civil.

GOAL: Detect disbond in metal composite joint. 

Material
Electrical Property Size

!" tan# m × m

Composite 3.8 0.017 1 × 0.3

Epoxy 3.6 0.032 1 × 0.03

Disbond 1 0
0.3 × 0.03
(2& × &/5)

• Transceiver system: 20 sources, 50 receivers.       

Disbond

Composite

Epoxy Metal

Antenna array

Model Geometry: Far field EM imaging 
system for NDE of metal composite joints

Lining Metal joint Composite

Metal-composite tube for buildings [3] 
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[3] Li, H., Zhang et al., 2015. Failure analysis of the adhesive metal joint bonded on 
anticorrosion plastic alloy composite pipe. Engineering Failure Analysis, 47, pp.49-55.
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Visualization of the back-propagated adjoint fields
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Sensitivity Kernels for imaging defects

• !" shows the maximum contrast.
• Down range resolution limited due to diffraction 

limits.
• Full width at half maxima of the row of 

maximum intensity of the kernels (0.25 m) 
correlate with disbond length.
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!$
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Comparison of kernels (Black dashed 
line is the predicted disbond length) 
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Application: Oil monitoring during steam injection 
process

• Steam assisted gravity drainage (SAGD) is an enhanced
oil recovery method.

• Advanced diagnostics needed to monitor an oil
reservoir during steam injection.

GOAL: Image steam front in an oil reservoir.

Material
Electrical Property

!" # (S/m)

Oil 8 0.01

Steam 20 0.01

• Downhole radar system: 20 sources, 50 receivers
Model Geometry: Steam injected in 
oil reservoir to enhance production

Schematic representation of a potential 
downhole radar system in a SAGD process [4] 
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[4] Miorali, M. et al., 2011. A feasibility study of borehole radar as a permanent 
downhole sensor. Geophysical Prospecting, 59(1), pp.120-131.
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Sensitivity Kernels for oil monitoring

• The steam boundary can be clearly detected in the kernels. 
• Primarily sensitivity in the center of the model due to radar configuration. 
• Permeability and conductivity kernels extremely sensitive to interface discontinuities.
• Permittivity kernel provides more volumetric information, showing a permittivity anomaly.

!" !# !$
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Application: CO2 sensing during sequestration

• Accurate monitoring during CO2  sequestration 
needed for detecting and tracking CO2. 

• Cross-bore radar can be used for CO2  detection 
in brine saturated aquifers.

GOAL: Detect CO2 in brine saturated aquifer.

Material
Electrical Property

!" # (S/m)

Brine 10 0.01

Caprock 7 0.002

CO2 3 0.03

• Crossbore radar system: 8 sources, 80 receivers
(need reflection and transmission data)
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[5] Geologic Sequestration of Carbon Dioxide Underground Injection Control Program 
Class VI Well Testing and Monitoring Guidance,  Environment Protection Agency 2013.
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• The CO2 interface can be clearly detected in the kernels. 

• !" shows the maximum sensitivity.

Sensitivity Kernels for CO2  sensing

CO2
region
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Conclusions and future work

§ The adjoint method is used to compute finite frequency sensitivity 
kernels. 

§ The newly developed kernels demonstrate their sensitivity for diverse 
imaging applications: 
— Detection of source,
— NDE of composites [6], 
— oil monitoring [7],
— CO2 sensing. 

§ Preliminary simulation results are promising, show high efficiency from 
scales ranging from millimeters to 100s of meters.

§ Future work: Use the kernels in an adjoint iterative framework for direct 
inversion of EM properties.
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[6] Mukherjee, S., Morency, C., “Finite Frequency Sensitivity Kernels For Microwave NDE Of Metal-composite Joints” , QNDE 2019 (to be presented).
[7] Mukherjee, S., Morency, C., “Investigation of a radar based adjoint imaging method for oil monitoring applications”, SEG Workshop 2019 (to be presented).
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