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Fiber optic distributed acoustic sensors (DAS) are becoming a widely used tool for seismic sensing for
both active and passive measurements. DAS sensors possess several advantages such as low-cost
high spatial resolution and wide bandwidth response, but also includes disadvantages such as one
component of measurement and a higher noise floor. Here we explore the components of the typical
system response (interrogator, fiber/cable, and coupling) and the expected response along with an
assessment of the potential for future improvements. Validation of the estimated response is
ongoing using a custom interrogator and a fiber testbed. We then apply this understanding to
measurements of local and regional events including full waveform modelling and earthquake il
parameters inferred from coda measurements using data from fiber sensors. Unconventional oil and gas production

Image fractures and fluid

Fiber optic dynamic strain sensors allow the measurements of seismic and acoustic signals.
The nature of fiber allows new and novel measurements at high spatial resolution and in extreme conditions.

Further improvements are possible in the areas of improved modeling and sensor development.
LLNL possess the core capabilities to address these challenges.
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The slim nature of fiber makes it ideal for measurements in a a subsurface well. Above are example of the

strain field caused by an hydraulic fracture in an oil well and models of the strain as computed by a LLNL
computation rock mechanics code.
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* We have successfully modeled observed signals; inversion is in progress.

A2 4 6, g, Here we show an example of an earthquake collected by a fiber deployed on the surface. The fiber was col-located * We expect that substantial improvements in capability are possible (multiple helix cables, high-
with geophones to compare response. Modeling yielded a good fit to the data, both fiber and geophone. temperature [>200 C] sensors, weak fiber Bragg, enhanced sensitivity.
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