Measuring Generalization in Machine Learning

CASIS, 2019

Gerald Friedland (ENG, UC Berkeley) with input from Berkeley Institute of Data Science "Uncertainty and Information" discussion group

May 15, 2019

LLNL-PRES-774205

Lawrence Livermore
Lational Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Background

■ SIAM CSE: On the Capacity of Neural Networks See: tfmeter.icsi.berkeley.edu

Information Theory and Signal Processing make Machine Learning (ML) more efficient!

- Intelligence: *The ability to adapt* (Binet and Simon, 1904)
- Machine learning *adapts a state machine to an unknown function based on observations*.
- Input: *n* rows of observations (instances) in a table with header: $(x_1, x_2, \ldots, x_m, f(\vec{x}))$

where $f(\overrightarrow{x})$ is a column with labels.

Output: State machine *M* that maps a point

$$
(x_1, x_2, \ldots, x_m) \implies f(\overrightarrow{x})
$$

Assume

(binary classifier) $x_i \in \mathbb{R}, f(\vec{x}) \in \{0,1\}$

Question:

How many state transitions does M need to model **the training data?**

Refresh: Memory Arithmetic

- Information is reduction of uncertainty: *H=-* $\log_2 P$ *= -* $\log_2 \frac{1}{\log_2 P} = \log_2$ *#states* measured in bits.^{#states}
- Information: log_2 #states (positive bits) Uncertainty: $log_2 P=log_2 _ 1$ (negative bits) #*states*
- If states are not equiprobable, *Shannon Entropy* provides tighter bound. Math: Assumptions needed! (infinity, distribution) Engineering: Estimate using binning

Assume

$$
x_i \in \mathbb{R}, f(\overrightarrow{x}) \in \{0,1\}
$$

(binary classifier)

Question:

How many state transitions does M need to **model the training data?**

Maximally: #rows (lookup table) Minimally: ? (Shannon Entropy of significant digits)

- **EXPHEEF Intellectual Capacity:** The number of unique target functions a *machine learner is able to represent (as a function of the number* of model parameters).
- **Memory Equivalent Capacity (MEC):** A machine learner's intellectual capacity is memory-equivalent to N bits when the *machine learner is able to represent all 2^N binary labeling functions* of N uniformly random inputs.
- At MEC or higher, M is able to **memorize** all possible state transitions from the input to the output.

Generalization in Machine Learning

Memorization is worst-case generalization.

For binary classifiers:

$$
G = \frac{\text{Hcorrectly classified points}}{\text{Memory Equivalent Capacity}} \left[\frac{\text{bits}}{\text{bit}}\right]
$$

G<1 => *M* needs more training/data $G=1 \Rightarrow M$ is memorizing = overfitting *G>1* => *M* is generalizing

]

Generalization in Machine Learning

$$
G = \frac{\text{#correctly classified points}}{\text{Memory Equivalent Capacity}} \left[\frac{\text{bits}}{\text{bit}}\right]
$$

Advantages of this definition:

- Keep current approach with training/validation/benchmark sets.
- No i.i.d. requirement for train/test set: Only requirement is input points are distinct!
- No distributional assumptions.

How do we calculate the Memory Equivalent Capacity?

- Binary Decision Tree: Depth of tree (if perfect).
- Neural Network (see next slide)
- Random Forrest: TBD
- SVN: TBD
- \bullet k-NN: TBD
- \bullet GMMs: TBD

Memory Equivalent Capacity for NNs is like Circuit Analysis

- 1. The output of a single perceptron yields maximally one bit of information.
- 2. The capacity of a single perceptron is the number of its parameters (weights and bias) in bits.
- 3. The total capacity C_{tot} of M perceptrons in parallel is $C_{\text{tot}} = \sum_{i=1}^{M} C_i$ where C_i is the capacity of each neuron.
- 4. For perceptrons in series (e.g., in subsequent layers), the capacity of a subsequent layer cannot be larger than the output of the previous layer.

a) 3bits, b) RESNET: 3bits+4bits=7bits, c) 2*3bits+3bits=9bits d) $2*3+max(2*3,2+2)+max(3,2+1)=6+4+3=13bits$

Generalization for Regression

- Assume an n-row table with header:
- Memorization is worst-case generalization

$$
G = \frac{\text{Hcorrectly predicted rows}}{\text{Hrows that can be memorized}}
$$

G<1 => *M* needs more training/data *G=1* => *M* is memorizing = overfitting *G>1* => *M* is generalizing

Process: Reduce MEC of Machine Learner while Training

Lawrence Livermore National Laboratory LLNL-PRES-774205

Conclusion

- **Information definition of generalization for Machine Learning** that uses less assumptions and is therefore easier to implement.
- Creates an engineering process. Start at MEC=#instances!
- **E.** Allows comparisons of approaches beyond accuracy.
- Provides and understanding of data/training needs.
- Smallest MEC, highest accuracy = best machine learner. (Occam's Razor)

Future Work

- MEC for various other classifiers and tasks:
	- SVN, Random Forrests, GMMs, k-nn?
	- Impact of regularization?
	- **EXEC** Impact of imperfect training?
	- Regression, generative modeling
- Tools, tools, tools.

Questions?

