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▪ SIAM	CSE:	On	the	Capacity	of	Neural	Networks 
See:	tfmeter.icsi.berkeley.edu  

Background

Information	Theory	and	Signal	Processing	make	 
Machine	Learning	(ML)	more	efficient!

http://tfmeter.icsi.berkeley.edu
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▪ Intelligence:	The	ability	to	adapt	(Binet	and	Simon,	1904)	

▪ Machine	learning	adapts	a	state	machine	to	an	unknown	
function	based	on	observations.	

▪ Input:	n	rows	of	observations	(instances)	in	a	table	with	
header: 
 
 
where															is	a	column	with	labels.			

▪ Output:	State	machine	M	that	maps	a	point	

Thought	Framework:	Machine	Learning

(x1, x2, . . . , xm, f( ⃗x ))

f( ⃗x )

(x1, x2, . . . , xm) ⟹ f( ⃗x )
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▪ Assume	 
 
 
 
(binary	classifier)  
 
 
 
 
 

▪ Question:	 
 
How	many	state	transitions	does	M	need	to	model	
the	training	data?

Thought	Framework:	Machine	Learning

xi ∈ ℝ, f( ⃗x ) ∈ {0,1}
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Refresh:	Memory	Arithmetic

• Information	is	reduction	of	uncertainty:		 
H=-log2	P=	-log2											=	log2	#states  
measured	in	bits.	

• Information:	log2	#states	(positive	bits)  
Uncertainty:	log2	P=log2										(negative	bits)		

• If	states	are	not	equiprobable,	Shannon	Entropy	
provides	tighter	bound.	  
Math:	Assumptions	needed!	(infinity,	distribution) 
Engineering:	Estimate	using	binning

1
#states

1
#states
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▪ Assume	 
 
 
 
 
(binary	classifier)  
 
Question:	 
 
How	many	state	transitions	does	M	need	to	
model	the	training	data?  
 
Maximally:	#rows	(lookup	table)  
Minimally:	?	(Shannon	Entropy	of	significant	digits)

Thought	Framework:	Machine	Learning

xi ∈ ℝ, f( ⃗x ) ∈ {0,1}
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▪ Intellectual	Capacity:	The	number	of	unique	target	functions	a	
machine	learner	is	able	to	represent	(as	a	function	of	the	number	
of	model	parameters).	

▪ Memory	Equivalent	Capacity	(MEC):	A	machine	learner’s	
intellectual	capacity	is	memory-equivalent	to	N	bits	when	the	
machine	learner	is	able	to	represent	all	2N	binary	labeling	functions	
of	N	uniformly	random	inputs.	

▪ At	MEC	or	higher,	M	is	able	to	memorize	all	possible	state	
transitions	from	the	input	to	the	output.

Thought	Framework:	Machine	Learning
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Generalization	in	Machine	Learning

Memorization	is	worst-case	generalization. 
 
For	binary	classifiers: 
 
 
 
 
G<1	=>	M	needs	more	training/data 
G=1	=>	M	is	memorizing	=	overfitting 
G>1	=>	M	is	generalizing 

G =
#correctly classified points

Memory Equivalent Capacity
[
bits
bit

]
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Generalization	in	Machine	Learning

G =
#correctly classified points

Memory Equivalent Capacity
[
bits
bit

]

Advantages	of	this	definition:	

• Keep	current	approach	with	training/validation/benchmark	sets.	

• No	i.i.d.	requirement	for	train/test	set:	Only	requirement	is	input	
points	are	distinct!	

• No	distributional	assumptions.
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How	do	we	calculate	the	Memory	Equivalent	
Capacity?

• Binary	Decision	Tree:	Depth	of	tree	(if	perfect).	

• Neural	Network	(see	next	slide)	

• Random	Forrest:	TBD	

• SVN:	TBD	

• k-NN:	TBD	

• GMMs:	TBD
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Memory	Equivalent	Capacity	for	NNs	is	like	Circuit	
Analysis

a)	3bits,	b)	RESNET:	3bits+4bits=7bits,	c)	2*3bits+3bits=9bits  
d)	2*3+max(2*3,2+2)+max(3,2+1)=6+4+3=13bits
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Generalization	for	Regression

• Assume an n-row table with header: 


• Memorization is worst-case generalization 
 
 
 
 
 
 
G<1 => M needs more training/data 
G=1 => M is memorizing = overfitting 
G>1 => M is generalizing

G =
#correctly predicted rows

#rows that can be memorized
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Process:	Reduce	MEC	of	Machine	Learner	while	
Training
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▪ Information	definition	of	generalization	for	Machine	Learning	
that	uses	less	assumptions	and	is	therefore	easier	to	
implement.	

▪ Creates	an	engineering	process.	Start	at	MEC=#instances!	

▪ Allows	comparisons	of	approaches	beyond	accuracy.	

▪ Provides	and	understanding	of	data/training	needs.	

▪ Smallest	MEC,	highest	accuracy	=	best	machine	learner. 
(Occam’s	Razor)

Conclusion
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▪ MEC	for	various	other	classifiers	and	tasks:	

▪ SVN,	Random	Forrests,	GMMs,	k-nn?	

▪ Impact	of	regularization?	

▪ Impact	of	imperfect	training?	

▪ Regression,	generative	modeling	

▪ Tools,	tools,	tools.

Future	Work
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Questions?

Thank	You!


