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Graphs are everywhere
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Social science
Collaboration network

Cyber-security
Computer network

Neuroscience Energy
Functional brain network Power grid network
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Given a graph ...

Complex system

Graph model
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= Obvious nodes and edges (power grid, computer network)

= Obvious nodes, but not edges (social networks)

= Nodes not given (brain, mobility networks)
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How to define nodes when not given?

Edges
from taxi
usage
data
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travel network

What makes a
“good” set of nodes?
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Many brain parcellations have been proposed
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Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, EC., Rueckert, D., Parisot, S., 2017, Human brain mapping: A systematic comparison of
parcellation methods for the human cerebral cortex, Neurolmage, doi: 10.1016/j.neuroimage.2017.04.014
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Node learning as a clustering problem

= We observe a set of interactions

— I = {(xla yl)) (x27 y2)7 <oy (Q?g, yﬁ)}
— e.g., taxi trips at geographical coordinates, blood oxygen level at voxels

= Assume interactions occur in an unobserved bipartite graph
— Graph G = (SUR, F) of senders S = {s1,...,5,} and receivers R = {ry,...,rm}

S R

observed hidden
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Node learning as a clustering problem

= Goal: Given the observed interactions, we want to recover the hidden graph (i.e.,
senders and receivers)

= Approach: Cluster interactions into nodes according to two criteria:
— Behavioral Coherence: Points in the same sender should all interact with the same (sparse)

set of receivers
— Proximity Coherence: Nodes should have contiguous shape

Behavioral
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Proposed methods

= Clustering with the distance-dependent Chinese Restaurant Process (ddCRP)
— Non-parametric generative model for cluster data
— Constrained by distance Probability of sitting

together inversely
/ proportional to distance
- f(Dez) i # ]
o . .

“dispersion” parameter
g — controls probability of
J new table

P(PARENT(i) = j|D, a, f)
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Proposed methods

= Behavioral coherence
— Assume we knew the receivers R = {ry,...,7y}
— A point &L in sender S samples a receiver from a Categorical distribution
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Proposed methods

= |f we had a set of receivers, we could cluster x’s into senders using a ddCRP
— Customers ->x’s
— Tables -> sender nodes
— Dish -> Categorical distribution parameter

= Similarly, if we had senders, we could cluster y’s into receivers

= Main idea: iteratively cluster x’s and y’s until convergence
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Proposed methods
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Proposed methods

@ = Little pre-processing needed
@ = Few parameters

@ = |nference requires sampling (slow)
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Proposed methods

= Spectral clustering as a fast heuristic
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Validation on synthetic data
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Validation on synthetic data

= ddCRP clustering similar to ground truth

= More accurate in regions with more observations

Ground Truth (100) 2ddCRP (93)
e 0 .
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Validation on synthetic data

= Measured accuracy using adjusted mutual information (AMI)
— Close to 1 if inferred clusters resemble the ground truth
= ddCRP much more accurate than spectral clustering, but much slower
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New York City Taxi Data

= ddCRP applied to Manhattan taxi trips

11/27
Thanksgiving

11/6 1113

= Manhattan roughly divided into Upper,
Lower, West Side, and East Side
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New York City Taxi Data

= Spectral clustering applied to the entire city

Different nodes for Upper, Lower, West Side,
and East Side Manhattan

Tessellated regionsin
Staten Island
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Conclusions

= Goal: Learn nodes of a graph from “atomic” interactions

ddCRP Spectral Clustering

* No pre-processing required » Scales to millions of interactions
 Few parameters « Requires initial partition
 Infers number of nodes * Needs to specify number of

» Probabilistic interpretation nodes

« Slow

 “Nodes” are defined as a cluster
of points. How to label new
observations?
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