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The Internet of Things (IoT) makes 

possible Smart-X where

𝑋 ∈
𝑐𝑖𝑡𝑦, 𝑓𝑎𝑐𝑡𝑜𝑟𝑦, 𝑔𝑟𝑖𝑑,

𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, ℎ𝑜𝑚𝑒, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛,
ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒, 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑢𝑟𝑒,𝑚𝑒𝑡𝑒𝑟𝑖𝑛𝑔

Borrowed from 

Vince Poor, Princeton



➢IoT a market opportunity for equipment manufacturers, internet 

service providers and application developers.

➢Over 1 trillion IoT sensors, machines, objects, devices by 2022

➢IoT smart objects to reach 45% of all Internet traffic by 2022 

➢Top Three Applications and Market Share:  Healthcare (41%), 

Manufacturing (37%), Electricity (7%) 

Importance of IoT:



➢ Desired real time control/reaction & low complexity sensor 

nodes makes standard security too slow and complex

➢ Interest in layers of security and new approaches

Solutions:

➢ 1. Use the best processing with multiple sensors to combat 

attacks on sensor data and communications (focus here)

➢ 2. Employ lower complexity encryption and authentication

➢ 3. Employ Physical Layer Security  

Security of IoT:



➢ Attackers modify data entering/communicated from sensors.

➢ Provide tight bounds (w sufficient data) on performance of 

best algorithms trying to estimate a parameter after attack.

➢ Results hold for any estimation algorithm, deep learning,  

machine learning, ….  

➢ Example algorithms that achieve performance close to bounds 

illustrated.  Use attacked data?  How?  

➢ Attacks that make attacked data useless for reducing bounds 

described. Attacks provide guaranteed degradation to bounds 

regardless of the algorithms the estimation system employs.

➢ References are supplied for various extensions to all results.

➢ Beyond sensing - Brief discussion of applications to IEEE   

1588 for clock synchronization is provided.

Goal/Focus:
J. Zhang, R. S. Blum and H. V. Poor, “Approaches to 

Secure Inference in the Internet of Things”, IEEE Signal 

Processing Magazine, Vol 35, Issue 5,  pp. 50-63, 2018.



1. Multiple Sensor Network Estimation System

Phenomenon →  Sensors → Fusion Center:

Estimate ϴ



Simple Estimation Problem 

Temperature Estimation Example:

In the ABSENCE any attacks:

❑ At each sensor: Measured Temperature = Actual temperature + Noise 

❑ The noise at each sensor is independent (unrelated) to others

❑ 𝑋𝑗𝑘 = 𝜃 +𝑊𝑗𝑘 so 𝑋𝑗𝑘~ 𝑁 𝜃, 𝜎2



More Complicated Estimation Problem 

Estimation Example in Radar System (Localization):

In the ABSENCE any attacks:

Self driving cars



Attacks on Distributed Sensor Network Estimation System

Phenomenon →  Sensors → Fusion Center:



Attacks on Distributed Sensor Network Estimation System

Spoofing Attacks and Man-in-the-middle Attacks :

General computer

attack terminology



Attacks on Distributed Sensor Network Estimation System

Spoofing Attacks and Man-in-the-middle Attacks:



If j-th sensor is under the p-th spoofing attack, then 

𝑥𝑗𝑘 → ෤𝑥𝑗𝑘

𝑓𝑗 𝑥𝑗𝑘 𝛉 → 𝑔𝑗 ෤𝑥𝑗𝑘 𝛉, 𝝉

Distributed Estimation System and Attack Model
With Attack Model

Attack Vector Parameter

Spoofing attack changes

the pdf of obs, and new

pdf can depend on 𝝉



Motivation of Spoofing Attack Model

Simple Example in Radar System:

In the ABSENCE of spoofing attacks:

Spoofing Attacks in Radar Systems [6, 7]: Radars will appear in all cars (esp

self-driving) to fuse with video to avoid hitting people.  

Radar chips costing less than $1 under development -> All IoT



Motivation of Spoofing Attack Model

Simple Example in Radar System:

In the PRESENCE of spoofing attacks:



Simple Example in Radar System:

In the PRESENCE of spoofing attacks:

The essential effect of the spoofing attack:

Similar spoofing attack examples can be found in Smart grids.

Motivation of Spoofing Attack Model

( ) ( ) ( )Under Spoofing Attack ,f x g x f x   ⎯⎯⎯⎯⎯⎯⎯→ = +

Attack Parameter

In one special case where one

modified delay term returns



Great Interest in Spoofing Attacks 

Spoofing Attacks in Smart Grids [3-5]: Falsify the measurements at the attacked 

Phasor Measurement Units, e.g. data-injection attack. or GPS spoofing
[3] S. Cui, Z. Han, S. Kar, T. T. Kim, H. V. Poor, and A. Tajer, “Coordinated data-injection attack and detection in the smart grid: A detailed 

look at enriching detection solutions,” Signal Processing Magazine, IEEE, vol. 29, no. 5, pp. 106–115, 2012.

[4] T. T. Kim and H. V. Poor, “Strategic protection against data injection attacks on power grids,” Smart Grid, IEEE Transactions on, vol. 2, 

no. 2, pp. 326–333, 2011.

[5] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on the smart grid,” Smart Grid, IEEE Transactions on, vol. 2, no. 4, 

pp. 645–658, 2011.

GPS 

Spoofing 



Topology Attacks (with CMU)

Topology attacks in Smart Grid [6-8]: Affect the network operator’s knowledge of 

the topology of the grid either by physically affecting the lines in the grid (Physical 

Topology Attacks) or by manipulating the topological information communicated to 

the operator (Cyber Topology Attacks). 

[6] J. Weimer,  S.  Kar,  and  K.  H.  Johansson,  “Distributed  detection  and isolation of topology attacks in 

power networks,” in Proceedings of the1st  international  conference  on  High  Confidence  Networked 

Systems. ACM, 2012, pp. 65–72. 

[7] Ananth Narayan Samudrala, M. Hadi Amini, Soummya Kar, and Rick S. Blum, "Optimal Sensor Placement 

for Topology Identification in Smart Power Grids", 2019 53rd Annual Conference on Information Sciences and 

Systems (CISS), March 2019. 

[8] Ananth Narayan Samudrala, M. H. Amini, S. Kar, and R. S. Blum, "Sensor Placement for Outage 

Identifiability in Power Distribution Networks", submitted to IEEE Transactions on Smart Grid, 2019.



Attacks on Natural Gas Networkss

• Natural gas networks threatened by cyber-attacks [9]. 

• Topology also important for natural gas networks. Incorrect topology information can 

cause the operator to apply inappropriate control causing damage and disturption.

• Operator can use our topology verification algorithm [10] to determine from sensor 

measurements if the topology matches what the operator believes.

[9] Ponemon Institute, “The state of cybersecurity in the oil & gas industry: United States”, U.S. , 2017, pp 1-6.

[10] Z. Wang and R. Blum, “Topology attack detection in natural gas delivery networks”, in Information Sciences and Systems (CISS),

2019 53rd Annual Conference on. IEEE, 2019, pp. 1–6.

[11] V. Do, L. Fillatre, I. Nikiforov, and P. Willett, “Security of SCADA systems against cyber-physical attacks”, IEEE Aerospace and

Electronic Magenize, Vol. 32, pp 28-45, 2017.
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other types of 

cyber attacks: 
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injection, 
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and man-in-

the-middle 

attack [11].



Delay Attacks in IEEE 1588

• IEEE 1588 is a popular time synchronization protocol offering

timing accuracy close to GPS-based timing.

• Standard prescribed by Time-Sensitive Networking task group

of the IEEE 802.1 working group and used in LTE networks,

smart grids and Industrial automation applications.

• Generally assumed that propagation delays in the forward and

reverse path are equal. (Necessary for obtaining a unique

solution for the clock skew and offset.)

• Malicious nodes can delay timing packets, degrading the

performance of the clock synchronization algorithms [12].

Delay attacks CANNOT be countered using cryptographic

protocols, as the attacker is not modifying the content of the

timing packet [13-14].

[12]. M. Ullmann and M. Vögeler, "Delay attacks — Implication on NTP and PTP time

synchronization," 2009 International Symposium on Precision Clock Synchronization for

Measurement, Control and Communication, Brescia, 2009, pp. 1-6.

[13] A. K. Karthik and R. S. Blum, “Estimation theory-based robust phase offset

determination in presence of possible path asymmetries”, in IEEE Transactions on

Communications, vol. 66, no. 4, pp. 1624–1635, April 2018.

[14] A. K. Karthik and R. S. Blum, “Robust phase offset estimation for IEEE 1588 PTP in

electrical grid networks”, in 2018 IEEE Power & Energy Society General Meeting

(PESGM), Portland, OR, August 2018, pp. 1–5.



Part I: Optimum Processing in the 

Presence of Man-in-the-Middle 

Attacks - Asymptotic

J. Zhang, R. S. Blum, X. Lu, and D. Conus, “Asymptotically optimum distributed 

estimation in the presence of attacks,” Signal Processing, IEEE Transactions on, 

vol. 63, no. 5, pp. 1086–1101, March 2015.

B. Alnajjab, J. Zhang, and R. S. Blum, “Attacks on sensor network estimation     

systems with quantization: Performance and optimum processing,”  IEEE           

Transactions on Signal Processing,  vol. 63, no. 24,  pp. 6659-6672, Dec.15, 2015

Jiangfan Zhang, Xiaodong Wang, Rick S. Blum and Lance M. Kaplan, "Attack D

etection in Sensor Network Target Localization Systems with Quantized Data",  I

EEE Transactions on Signal Processing, Vol. 66, No. 8, 2070 – 2085, April15, 20

18. – also general to spoofing.



System Model

For simplicity of analysis, assume:
▪ 𝑥𝑗𝑘 = 𝜃 + 𝑛𝑗𝑘 , ∀𝑗 = 1,2, . . . , 𝑁, ∀𝑘 = 1,2, . . . , 𝐾.

▪ 𝜃 : deterministic scalar parameter to be estimated;

▪ 𝑛𝑗𝑘: additive zero-mean, known pdf 𝑓(𝑛𝑗𝑘), i.i.d. 

▪ Binary quantizer: 𝑢𝑗𝑘 = 1 𝑥𝑗𝑘 ∈ 𝜏,∞

Without Attack Model

B. Alnajjab, J. Zhang, and R. S. Blum, “Attacks on 

sensor network estimation     systems with quantiza

tion: Performance and optimum processing,”  IEEE           

Transactions on Signal Processing,  vol. 63, no. 24,  

pp. 6659-6672, Dec.15, 2015



Man-in-the-middle Attack Model

▪𝒜𝑝: the set of sensors subjected to the 𝑝-th attack for all 

𝑝 = 1,2, … , 𝑃.

▪𝒜0: the set of unattacked sensors.

Statistical description of the 𝑝-th attack: 



Theorem: Under some assumptions (set of unattacked > any attacked set),

1) For any 𝑁, as K→ ∞, the FC is able to determine 𝑃 and identify 𝒜𝑝 𝑝=0

𝑃
w.p.1.

2) If each sensor observes a finite number 𝐾 > γ of time samples then as N→ ∞, the 

FC is able to determine 𝑃. Moreover, for each 𝑝-th attack, the FC can identify an 

approximate group ෪𝒜 𝑝 of 𝒜𝑝 such that 

Assumptions:

▪ 𝒫0 > 𝒫𝑝 + Δ0, ∀𝑝 ≥ 1; 𝒫𝑝 ≥ Δ, ∀𝑝 ≥ 1.

Identification and Categorization of Attacked Sensors

The percentage of different sensors between 𝒜𝑝 and ෪𝒜 𝑝 can be made small as 𝐾 ↑

J. Zhang, R. S. Blum, X. Lu, and D. Conus, “Asymptotically optimum 

distributed estimation in the presence of attacks,” IEEE Transactions on 

Signal Processing, vol. 63, no. 5, pp. 1086–1101, March 2015.

γ =



For most attacks → can estimate the attack parameters 𝜓p,0, 𝜓p,1 𝑝=1

𝑃
.

They make attacked data useful for better estimation of θ, 

once we use a sufficient quantization approach (change τ).

Quantization limits dimension of θ → discuss later 

Can Categorize: Is Attacked Data Useful?

Based on CRB, achievable asymptotic lower

bound on MSE for  unbiased estimators, 

CRB from FIM

J. Zhang, R. S. Blum, X. Lu, and D. Conus, “Asymptotically optimum 

distributed estimation in the presence of attacks,” IEEE Transactions on Signal 

Processing, vol. 63, no. 5, pp. 1086–1101, March 2015.



For some special Attacks: Attacked data can never be useful.

We provide a mathematical calculation that decides.

Relative CRB Gain:

Rank tells if data useful for reducing CRB

Can Categorize: Is Attacked Data Useful?

Attack can make data

pmf independent on θ
Gives Gain

J. Zhang, R. S. Blum, X. Lu, and D. Conus, “Asymptotically optimum 

distributed estimation in the presence of attacks,” IEEE Transactions on Signal 

Processing, vol. 63, no. 5, pp. 1086–1101, March 2015.

Ignore attacked data

Uses attacked data



Taken together  (Categorization, use attacked data) → This 

describes Optimum Processing under any man-in-the-middle 

attack  

→ Use standard approach (ML) for possible joint estimation of 

desired and attack parameters.

Later: EM example where we don’t need much data  

OPTIMUM ESTIMATION UNDER ATTACK



Identification and Categorization of Attacked Sensors:

Setup:
▪ 𝑁 = 10,  𝜃 = 1, 𝜏 = 1.

▪ Additive noise: standard normal distributed.

▪ 1st Attack: 𝒫1 = 30%, 𝜓1,0, 𝜓1,1 = 0.2,0.8 .

▪ 2nd Attack: 𝒫2 = 20%, 𝜓1,0, 𝜓1,1 = 0.7,0.1 .

▪ Monte Carlo approximation (200 times) of the ensemble average of the percentage of miscategorized
sensors.

Numerical Results

K ↑, misclassification ↓

Verify the Theorem on the identification

and categorization of attacked sensors.

K



Asymptotic MSE ignoring (SEA) and using (TQA) attacked data):

Setup:
▪ 𝑁 = 100,  𝜃 = 2

▪ Additive noise: standard normal distributed.

▪ Length of each time slot: 𝐾𝑡 = 10.

▪ The set of 801 thresholds: 𝒬 = 0,−0.125,0.125,−0.250,0.250, . . . , −5,5 . 

▪ 1st Attack: 𝒫1 = 25%, 𝜓1,0, 𝜓1,1 = 0.9,0.95 .

▪ 2nd Attack: 𝒫2 = 20%, 𝜓1,0, 𝜓1,1 = 0.15,0.2 .

Numerical Results

❖Significant CRB improvement.

Verify the superiority of the TQA.

SEA: use only unattacked

K, the number of time samples



Relative Asymptotic MSE Gain vs the Percentage of Attacked Sensors :

▪ One attack

▪ Same as last

▪ All of Q

Numerical Results

Verify some attacks make data useless.



Part II:

Optimal Spoofing Attacks

J. Zhang, R. S. Blum, L Kaplan, and X. Lu, “Functional Forms of Optimum Spoofing Attacks for 

Vector Parameter Estimation in Quantized Sensor Networks,” IEEE Transactions on Signal 

Processing, Volume 65, Issue 3, Feb. 2017, pp. 705-720.

Describes the most effective attacks → make data useless  



Guaranteed Degradation Spoofing Attack (no math)

Optimal Guaranteed Degradation Spoofing Attack (OGDSA): Maximizes the 

Asymptotic MSE for 𝛉 under the assumption that 𝒜p p=0

P
is known to the FC.

There are TWO types of OPT ATTACKS (OGDSAs)

1. Can’t estimate attack parameters (FIM not invertible)    Inestimable Spoofing Attack (ISA)

can occur JUST BECAUSE YOU QUANTIZE

2. Attacked data from 𝒜𝑝 useless for reducing Asymptotic MSE,  but can estimate attack 

parameters (FIM is invertible).

Optimal Estimable Spoofing Attack (OESA)

have necessary and sufficient conditions for OESA

Any OGDSA implies attacked data is not helpful!



Theorem:

For the p-th spoofing attack, if 

FIM of attack parameter vector is singular, and hence, the p-th attack is ISA.

One functional form of ISA:

Employs                                 and 

Inestimable Spoofing Attack (ISA) just from Quantization

Quantization Induced Limitations!

Only determined by the numbers

of quantization levels employed in 

a given 𝒜𝑝

Attack parameters

Dim of 𝛕(𝐩)

( ) ( ) ( ) ( )

1 2, ,...,
p

T
p p p p

D   =
 

τ

# quant symbols



OESA: the p-th spoofing attack is OESA, 

If FIM for estimating attack parameters is nonsingular, but attacked 

data not useful for estimating 𝛉.

Theorem:

The necessary and sufficient conditions for OESA is roughly (see 

paper) 

Range space of FIM for estimating θ from pth attacked data 

is a subset of the range space of FIM for estimating the pth attack 

parameters

Optimal Estimable Spoofing Attack



Range space ideas

Corollary (A Class of Spoofing Attacks that Satisfies OESA):

Sufficient condition that the 𝑝-th spoofing attack is OESA for 

any values of 𝛉, 𝝉(𝒑) and {𝐼𝑗
(𝑟)
} is 

for some ෤𝑔𝑗.

Functional Form of OESA

To get the above equa

tion, the pdf must be 

a function of a linear 

combination of 𝛉 and 

𝛕(𝐩), nor 𝛉 and 𝛕(𝐩)

alone!

Gives general nec and suff conditions for 

how to manipulate the data for opt attacks



Example: Non-OGDSA
• MIMO radar with 1 Tx and N = 10 Rx, first three Rx under attack.  

• Each Rx has identical 4 bit quantizer with thresholds {-∞, -5, -4, -3, ..., 8, 9, ∞}.

• After attack m-th measurement, k-th pulse at j-th Rx

෤𝑥𝑗𝑚
(𝑘)

= 𝐸𝑗𝑎𝑗𝑠(𝑡𝑗𝑚
(𝑘)
−𝜃𝑗)+𝜉𝑗+ 𝑛𝑗𝑚

(𝑘)
,  m=1,2,…, M, k=1,2,…,K                  (1)

• 𝜃𝑗 is the desired parameter

• {𝑛𝑗𝑚
(𝑘)

} is iid N(0,5). sequence with variance 𝜎2= 5.

• 𝑠 𝑡 = Τ2 𝑇2 Τ1 4exp Τ−𝜋𝑡2 𝑇2

• sampling times are 𝑡𝑗𝑚
(𝑘)

= (m - 1)∆t, ∀m = 1, 2, ..., M.

• assume distance between target and any Rx >> distance between Rxs so 𝜃𝑗= θ ∀

j.

• T = 0.1, ∆t = 0.001, θ = 0.02, and 𝐸𝑗 = 1, 𝑎𝑗= 1 for all j.

• Attack parameters are 𝜉1 = 1, 𝜉2= -2 and 𝜉3 = -1.

• Employ an EM-based joint attack identification and parameter estimation 

approach 



Non-OGDSA: Data Injection



Example: OGDSA Attack

• Attack alters the delay in the received signal

• j-th Rx under attack for j = 1, 2, 3 (𝜉1 = 0.04, 𝜉2= 0.05 

and 𝜉3 = 0.06) as per

෤𝑥𝑗𝑚
(𝑘)

= 𝐸𝑗𝑎𝑗𝑠(𝑡𝑗𝑚
(𝑘)
−𝜃𝑗 −𝜉𝑗)+ 𝑛𝑗𝑚

(𝑘)
,                                 (2)

• 𝜉𝑗is the delay introduced by the OGDSA attack.



ODGSA: Delay



➢ Limitations of Estimation with Quantized Data (big data implications?)

Consider independent observations quantized using 𝑃 distinct quantizer designs 

with 𝑅𝑗, 𝑗 = 1,2, … , 𝑃 symbols. Assume observations into jth quantizer design 

come from 𝑀𝑗 different pdfs. The FIM is singular if

Dim of 𝛉 Estimation Capacity

Sufficient but 

not necessary

Have shown this also 

leads to nonidentifiablity

& have nonindependent results

Implications for Unattacked Systems

𝑃 = 𝑀1 = 𝑅1 − 1 = 1 𝑡ℎ𝑒𝑛 𝐷𝜃=1  

J. Zhang, R. S. Blum, L. Kaplan, and X. Lu, “A fundamental 

limitation on maximum parameter dimension for accurate 

estimation using quantized data,” IEEE Transactions on 

Information Theory,  Vol. 64, Issue 9, pp. 6180-6195, Sept. 2018 

(also on ArXiv).
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Related and Future Work 

Applying these ideas to general IoT systems in a 

few projects (IEEE 1588), but specific interest in 

smart electrical Grid and other power networks 

(gas) as part of our DoE cybersecurity center.

Working on other approaches: physical layer security, low 

complexity encryption and authentication, with some 

emphasis on sensor systems performing estimation, 

hypothesis testing. Focus on inference problems.


