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Figure 1. Progression of a 3-component coarse-grain (CG) simulation
that results in formation of a domain. CHOL DIPC DPPC

• Mutations in RAS protein lead to cancer initiation and growth.

• RAS interacts with, and affects domain formation in lipid cell
membranes.

• Domain formation detected in large-scale molecular dynamics (MD)
simulations using hand-engineered features and clustering
algorithms.

• We present an unsupervised deep learning approach for automatic
feature extraction.
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• Martini CG simulations model molecules with
“beads”; 8-12 in these simulations.

• Typically, a bead represents four heavy atoms
with associated hydrogens.

• Figure 2. a shows each bead bonded to 1-3
other beads.

• Structure defined by bond lengths and angles.

• Parameters have a certain range of motion
allowing molecules to assume different
configurations (2. b).

• Structure encoded using hand-engineered
features: positions, height, lipid tilt, and order
parameter of lipid tail.

• Interactions and neighborhoods encoded with
lipid area, and number/characteristics of
neighbors.

• Data formatted to include both structural
and neighborhood information.

• Structural data:

− relative radial(2)/cartesian(3) coordinates

− the type of molecule(3)

− head or tail bead(2)

− bond lengths with other beads(12)

• Radial coordinates make data rotationally
invariant.

• Neighborhood: structural data of k closest
neighbors appended to the molecule.

• Stacked autoencoder with 1D
convolutional and fully
connected layers.

• 8-D latent space representation
of the molecular structure and
neighborhood.

• Custom loss function to
account for the sparsity in the
input data.
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Figure 5. HDBSCAN clustering on simulation frame in a. using
different feature vectors (b-d). Colors represent lipids in a. and clusters
in b-d. Smaller black dots represent lipids labelled as noise.
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• Figure 5. a shows a typical frame with single domain (periodic
boundaries).

• Learned features produced robust and physically-meaningful
clustering stable to the changes in input parameters of HDBSCAN.

• Hand-engineered features required careful design and weighting to
produce desirable results.

• Use CANcer Distributed Learning Environment (CANDLE) for
hyperparameter and network architecture optimization.

• Improve the model to train from multiple simulations and create a
informative representation of molecules from unseen simulations.

• Train on complex simulations with several different molecule types.

• Use the learned compressed representation to quantify the state of
a simulation and create a predictive model to reduce simulation
time.
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