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Orbital Angular Momentum Multiplexing

 Orbital angular momentum beam: an e-m wave with a helical wavefront.

 OAM has been used for sensing and manipulation.

 OAM has been proposed as a new degree of freedom for multiplexing 
information in free-space links.

 It has been suggested that OAM multiplexing offers infinite capacity.

 The capacity of OAM multiplexing has not been studied or compared to 
other spatial multiplexing methods.
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 Employ multiple spatial (and polarization) modes to increase capacity.



Spatially Multiplexed Free-Space Links
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 Employ multiple spatial (and polarization) modes to increase capacity.

Candidate mode sets

Spatially Multiplexed Free-Space Links

…Spatial
Demux

Received
Signals…

Spatial
Mux

Transmitted
Signals Multimode Beam

Laguerre-
Gaussian

Modes

Orbital Angular
Momentum

Modes

Parallel
Gaussian

Beams



6

Outline

 (De)Multiplexers and Link Designs

 Physical Comparison: Counting Modes and Spatial Subchannels

 Information-Theoretic Comparison: Capacity and Degrees of Freedom

 Discussion
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Most SDM FSO experiments have employed:

 Phase masks + beamsplitters.

 Overall loss (mux + demux) scales with square of number of modes.











Multiplexers and Demultiplexers
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





Designs presented here are:

 Fundamentally lossless: do not employ incoherent splitting/combining.

 Reciprocal: a demultiplexer is a multiplexer operated in reverse.

Some designs presented here are:

 Fundamentally crosstalk-free: provide a one-to-one mapping between 
inputs/outputs and modes (assuming precise alignment/orientation).

Multiplexers and Demultiplexers
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Polar-to-Cartesian Coordinate Conversion
(OAM Modes, Low Crosstalk)

 Designed specifically for OAM modes.

 Can yield low crosstalk, and is independent of azimuthal orientation. 

G. C. G. Berkhout et al, Phys. Rev. Lett. 105 (2010).
M. N. O’Sullivan et al, Opt. Express 20 (2012). 
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Multi-Plane Conversion
(Any Modes, Low Crosstalk)

 Can be designed for L-G, H-G, OAM, or any mode set.

 Can yield low crosstalk.

G. Labroille et al,
Opt. Exp. 22 (2014).  
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 Suitable for L-G or H-G modes. 

 Yields inter- and intra-group crosstalk, necessitating MIMO equalization. 

Photonic Lantern: Adiabatic Mode Conversion
(LG or HG Modes, High Crosstalk)

S. G. Leon-Saval et al, Opt. Lett. 30 (2005).
N. K. Fontaine et al. Opt. Express 20 (2012). 
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 Suitable for L-G or H-G modes. 

 Yields intra-group crosstalk, necessitating intra-group MIMO equalization.

Mode-Selective Photonic Lantern
(LG or HG Modes, Intra-Group Crosstalk Only)

S. G. Leon-Saval et al, Opt. Express 22 (2014). 
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 Can yield low crosstalk for Gaussian beams.

 Can demultiplex other mode sets, but resulting crosstalk necessitates MIMO 
equalization. This demultiplexing strategy is considered in analysis below.

Imaging and Mode-Size Conversion
(Gaussian Beams, Low Crosstalk)

Multimode Beam

Single-Mode FibersTapers
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 Higher spectral efficiency.

 Higher receiver sensitivity.





Coherent Detection Links

Spatial
Demux

Recd.
Signals

… Spatial
Mux

Trans.
Signals Modes Recd.

Data

…

H ≈ I

Negligible Crosstalk

…

Local
Osc.



16

Non-Negligible Crosstalk
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 Easy to perform frequency-dependent
compensation for modal dispersion.

 Adapt using standard algorithm,
e.g., least mean squares.

Coherent Detection Links
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 Lower spectral efficiency.

 Lower receiver sensitivity.





Direct Detection Links
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Non-Negligible Crosstalk
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… …

Non-Negligible Crosstalk
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 Lower spectral efficiency.

 Lower receiver sensitivity.

 Difficult to perform frequency-dependent
compensation for modal dispersion.

 Adapt using “self-configuration” or
phase retrieval algorithm.

Direct Detection Links

D. A. B. Miller, Photon. Res. 1 (2013).
S. Ö. Arık and J. M. Kahn, Opt. Lett. 41 (2016).
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Outline

 (De)Multiplexers and Link Designs

 Physical Comparison: Counting Modes and Spatial Subchannels

 Information-Theoretic Comparison: Capacity and Degrees of Freedom

 Discussion
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 Use Q spatial modes to increase transmission capacity by a factor of Q.
(Can use two polarizations to achieve 2Q.)

 Design system so all Q modes pass with roughly equal gains (near-unitary
transmission matrix).

 Constrain diameter × numerical aperture (space-bandwidth product) and ask:

How does choice of mode set affect multiplexing gain Q?

Capacity Limits of Spatially Multiplexed Links

N. Zhao, X. Li, G. Li and J. M. Kahn, Nature Photonics 9, 822 (2015).
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 Given
R0 radius of transmit and receive apertures

NA = sin numerical aperture of lens

the quantity 

is proportional to the link space-bandwidth product, and determines the number
of modes that can propagate through the link. 

 Provided no beam clipping occurs, the model can also describe:

 Asymmetric one-lens link

 Symmetric or asymmetric two-lens link

 Ideal parabolic-index fiber

Canonical Symmetric One-Lens Link

2
0 VNARM 



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 How many modes Q can propagate through an optical system described by

?

 This approach is approximate because:

 The modes are not necessarily eigenfunctions of the optical system.

 The optical system does not necessarily have a sharp cutoff.

Counting Modes

2
0 VNARM 



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Laguerre-Gaussian
Q ≈ 6

Orbital Angular Momentum
Q ≈ 5

Gaussian
Q ≈ 7

Very Low Space-BW Product: M = 3

Counting Modes (2)


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Counting Modes (2)

Laguerre-Gaussian
Q ≈ 21

Orbital Angular Momentum
Q ≈ 11

Gaussian
Q ≈ 19

Low-to-Moderate Space-BW Product: M = 6 


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Counting Modes (2)

Laguerre-Gaussian
Q ≈ 21

Orbital Angular Momentum
Q ≈ 11

Gaussian
Q ≈ 19

Low-to-Moderate Space-BW Product: M = 6 

Q ~ M2 Q ~ MQ ~ M2 

 For details, see N. Zhao et al, Nature Photonics 9, 822 (2015).
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 Assume ideal multiplexer and perfect alignment (for now).

 Hij is transmission coefficient between mode j and output i. 

 H includes modes far beyond nominal cutoff determined by mode counting.

L-G, OAM and Gaussian Modes
 Consider imaging demultiplexer designed for Gaussian beams.

 Diffraction loss + crosstalk → H is non-diagonal and non-unitary.

OAM Modes Only
 Also consider ideal OAM demultiplexer (optimistic).

 Diffraction loss → H is diagonal and non-unitary.

Transmission Matrix

Hij

Mux
Input j …

……
…

Mode j Demux
Output i
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 Perform a singular value decomposition of the transmission matrix:

 U and V are unitary matrices. Their columns are transmit and receive bases
that diagonalize H into uncoupled spatial subchannels.  

 D is a diagonal matrix of the singular values:

 {1,…,Q} are eigenvalues of HHH, representing power gains of spatial subchannels.

Counting Spatial Subchannels

HUDVH 

 Q ,,diag 1 D
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Outline

 (De)Multiplexers and Link Designs

 Physical Comparison: Counting Modes and Spatial Subchannels

 Information-Theoretic Comparison: Capacity and Degrees of Freedom
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Capacity depends on:
 Operating SNR.

 Number of subchannels Q and their gains {1,…,Q}. 

Assume:
 Transmitter knows {1,…,Q} and beamforming matrix U. 

 Equal noise power 2 per receiver.

 Constraint on total transmit power                     .

 Total SNR is                                . 



Channel Capacity

 


Q

q qPP
1

 


Q

q qPSNR
12

1

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 Number of subchannels effectively conveying information:

 Low SNR: power-limited, EDOF independent of Q.

 High SNR: mode-limited, EDOF approaches Q.

Effective Degrees of Freedom

D.-S. Shiu et al, Trans. Commun. 48, 502 (2000).
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 In choosing a mode set for spatial multiplexing, one should consider:
 Completeness of the set
 Ease of implementation
Whether or not the set includes OAM is irrelevant.

 Given a space-bandwidth product M, a system should:
 Operate at a multiplexing gain below the maximum Q.
 Demultiplex to a complete mode set (L-G, H-G or Gaussian)

to optimize tolerance to:

 Misalignment
 Atmospheric turbulence

 Free-space communications is most compelling over long links, where:
 Alignment and capturing the entire beam can be difficult.
 Atmospheric turbulence can be significant.
These conditions are more favorable for WDM than SDM.
Do free-space links require more capacity than WDM offers?

Discussion
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 Assume L >> f. Then

,  where ,

provided D ≥ 2 R0 L / f to avoid clipping.

 Matched designs ( D = 2 R0 L / f ) for Gaussian beams, 30-m pitch in Tx/Rx planes:

Symmetric Two-Lens Link


 NARM 0

f
DNA

2


R0R0

f f
2
L

2
L

link length L

( D, f )( D, f )

R0 
(m) 

f 
(cm) 

D 
(cm)  NA  L 

(m)  M 

65 12.5 1 0.04 10 5 
65 125 10 0.04 1000 5 
250 25 2 0.04 10 20 
250 250 20 0.04 1000 20 
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    ,, 0 rLGrOAM ll 
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Counting Laguerre-Gaussian Modes
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 Laguerre-Gaussian mode of order (p, l) :

 Define mode order: 

 Modes up to order m = M can propagate through the system.
Counting (p, l) such that 2p + |l| + 1 ≤ M:

 For tighter bounds, see N. Zhao et al, Nature Photonics 9, 822 (2015).
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 M2

Counting Laguerre-Gaussian Modes
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 Laguerre-Gaussian mode of order (p, l) :

 Define mode order: 

 Modes up to order m = M can propagate through the system.
Counting (p, l) such that 2p + |l| + 1 ≤ M:

 For tighter bounds, see N. Zhao et al, Nature Photonics 9, 822 (2015).
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Counting Laguerre-Gaussian Modes




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m = 2p + |l| + 11 6

Q ≈ 21 for M = 6
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 For a given l, the mode with p = 0 has the smallest space-bandwidth product.
OAM multiplexing typically uses modes with p = 0:

 Modes up to order m = M can propagate through the system.
Counting l such that |l| + 1 ≤ M:

Counting Orbital Angular Momentum Modes

12OAM  MQ

    ,, 0 rLGrOAM ll 
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 For a given l, the mode with p = 0 has the smallest space-bandwidth product.
OAM multiplexing typically uses modes with p = 0:
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



Counting Orbital Angular Momentum Modes

m = |l| + 11 6

Q ≈ 11 for M = 6
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 Each Gaussian beam can have the same r.m.s. divergence angle as an Mth-order 
L-G mode:

or

 Hence:

 The number of Gaussian beams that fit in the same area as as an Mth-order
L-G mode is equivalent to the number of circles of radius                    that fit in
a circle of radius                , which is estimated to be:

This bound is loose for small M.  

Counting Gaussian Beams
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 Each Gaussian beam can have the same r.m.s. divergence angle as an Mth-order 
L-G mode:

or

 Hence:

 The number of Gaussian beams that fit in the same area as as an Mth-order
L-G mode is equivalent to the number of circles of radius                    that fit in
a circle of radius                , which is estimated to be:

This bound is loose for small M.  

Counting Gaussian Beams
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









Counting Gaussian Beams

Q ≈ 19 for M = 6
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Assume
 Rs = 10 Gbaud,   = 1550 nm.

 Shot noise-limited coherent receiver with noise variance per receiver corresponding 
to one photon per symbol:
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 Consider M = 3, where OAM is most competitive.

 OAM with ideal demultiplexer tolerates least misalignment because of phase 
mismatch.

 Gaussian, L-G or OAM with imaging demultiplexer tolerate greater misalignment.

Impact of Receiver Misalignment

M = 3
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Gaussian
L-G
OAM
OAM-ideal

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

Norm. Rx Aperture Misalignment (d/0, LG)

ED
O

F


