Capacity Limits for Spatially Multiplexed Free-Space Optical Communication

Joseph M. Kahn¹ and Guifang Li²

¹E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University ²CREOL, College of Optics & Photonics, University of Central Florida

NSF Workshop on Free-Space Optical Networks • Arlington, VA • July 13-14, 2017

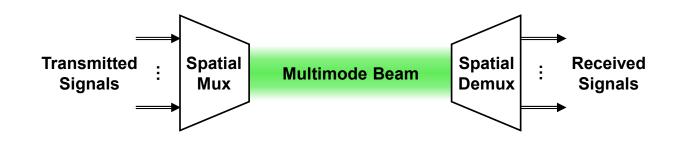
Orbital Angular Momentum Multiplexing

ARTICLES PUBLISHED ONLINE: 24 JUNE 2012 DOI: 10.1038/NPHOTON.2012.138	nature photonics	Home News & Comment Research News & Comment News 2016	al weekly journal of science Careers & Jobs Current Issue Archive Audio & Video April Article
Terabit free-space data transmission employing orbital angular momentum multiplexing Jian Wang ^{1,2} *, Jeng-Yuan Yang ¹ , Irfan M. Fazal ¹ , Nisar Ahmed ¹ , Yan Yan ¹ , Hao Huang ¹ , Yongxiong Ren ¹ , Yang Yue ¹ , Samuel Dolinar ³ , Moshe Tur ⁴ and Alan E. Willner ¹ *		NATURE NEWS <	
News & Comment News 2016 April Article Article NATURE NEWS <	PPLIED PHYSICS Different Angle Communications an E. Willner, ¹ Jian Wang ² , Hao Huang ¹	02 March 2012	PERSPECTIVES Can "twisted" light beams enhance optical communication systems?
Maggie McKee 27 June 2013	www.scie		l weekly journal of science Careers & Jobs Current Issue Archive Audio & Video
ARTICLE Received 17 Mar 2014 Accepted 1 Aug 2014 Published 16 Sep 2014 Dol: 10.1038/recommuS876 OPEN High-capacity millimetre-wave communications with orbital angular momentum multiplexing Yan Yan ^{1,*} , Guodong Xie ^{1,*} , Martin P.J. Lavery ^{2,*} , Hao Huang ^{1,*} , Nisar Ahmed ¹ , Changjing Bao ¹ , Yongxiong Ren ¹ , Yinwen Cao ¹ , Long Li ¹ , Zhe Zhao ¹ , Andreas F. Molisch ¹ , Moshe Tur ³ , Miles J. Padgett ² & Alan E. Willner ¹		NATURE NEWS Twisted light sends N distance	Mozart image over record

Orbital Angular Momentum Multiplexing

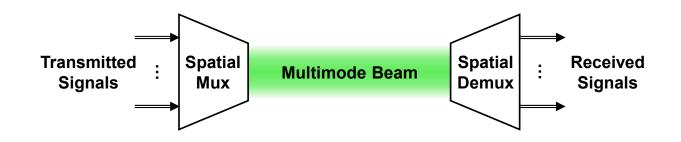
- Orbital angular momentum beam: an e-m wave with a helical wavefront.
- OAM has been used for sensing and manipulation.
- OAM has been proposed as a new degree of freedom for multiplexing information in free-space links.
- It has been suggested that OAM multiplexing offers infinite capacity.
- The capacity of OAM multiplexing has not been studied or compared to other spatial multiplexing methods.

Spatially Multiplexed Free-Space Links



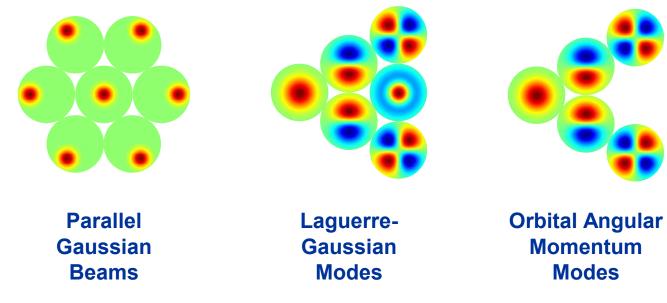
• Employ multiple spatial (and polarization) modes to increase capacity.

Spatially Multiplexed Free-Space Links



• Employ multiple spatial (and polarization) modes to increase capacity.

Candidate mode sets



Outline

- (De)Multiplexers and Link Designs
- Physical Comparison: Counting Modes and Spatial Subchannels
- Information-Theoretic Comparison: Capacity and Degrees of Freedom
- Discussion

Outline

- (De)Multiplexers and Link Designs
- Physical Comparison: Counting Modes and Spatial Subchannels
- Information-Theoretic Comparison: Capacity and Degrees of Freedom
- Discussion

Multiplexers and Demultiplexers

Most SDM FSO experiments have employed:

- Phase masks + beamsplitters.
- Overall loss (mux + demux) scales with square of number of modes.

Multiplexers and Demultiplexers

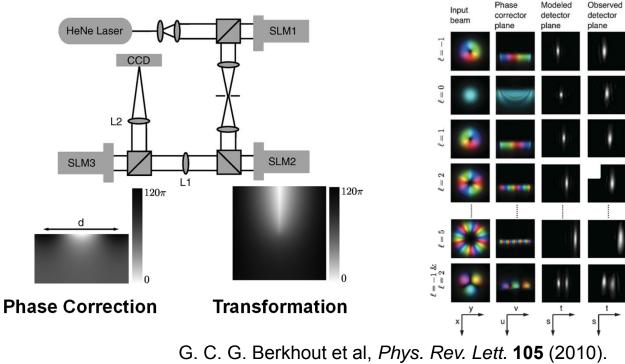
Designs presented here are:

- Fundamentally lossless: do not employ incoherent splitting/combining.
- **Reciprocal**: a demultiplexer is a multiplexer operated in reverse.

Some designs presented here are:

 Fundamentally crosstalk-free: provide a one-to-one mapping between inputs/outputs and modes (assuming precise alignment/orientation).

Polar-to-Cartesian Coordinate Conversion (OAM Modes, Low Crosstalk)

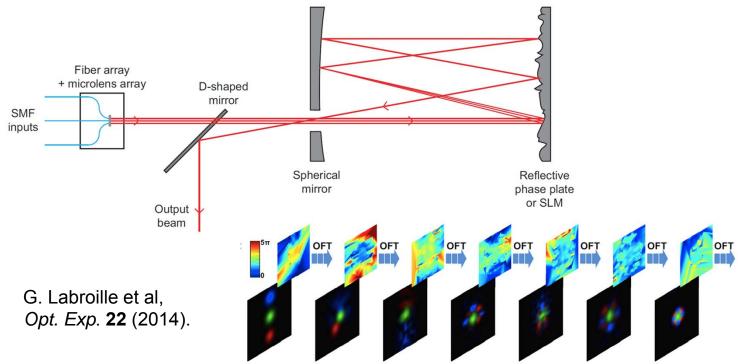


M. N. O'Sullivan et al, Opt. Express 20 (2012).

- Designed specifically for OAM modes.
- Can yield low crosstalk, and is independent of azimuthal orientation.

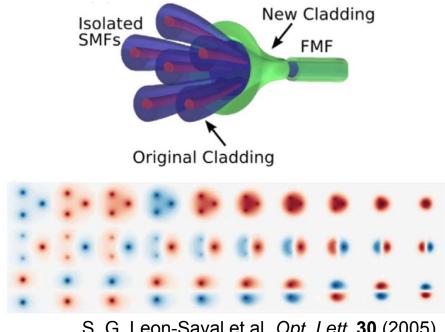
SMF inputs

Multi-Plane Conversion (Any Modes, Low Crosstalk)



- Can be designed for L-G, H-G, OAM, or any mode set.
- Can yield low crosstalk.

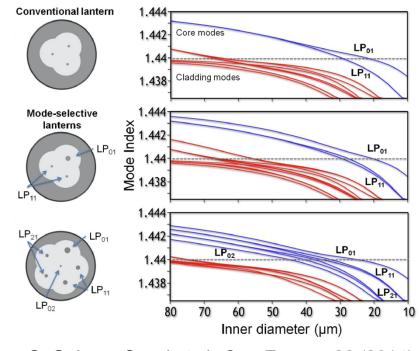
Photonic Lantern: Adiabatic Mode Conversion (LG or HG Modes, High Crosstalk)



S. G. Leon-Saval et al, *Opt. Lett.* **30** (2005). N. K. Fontaine et al. *Opt. Express* **20** (2012).

- Suitable for L-G or H-G modes.
- Yields inter- and intra-group crosstalk, necessitating MIMO equalization.

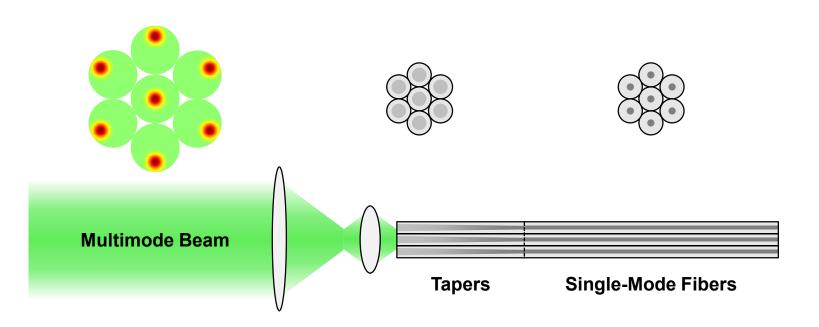
Mode-Selective Photonic Lantern (LG or HG Modes, Intra-Group Crosstalk Only)



S. G. Leon-Saval et al, Opt. Express 22 (2014).

- Suitable for L-G or H-G modes.
- Yields intra-group crosstalk, necessitating intra-group MIMO equalization.

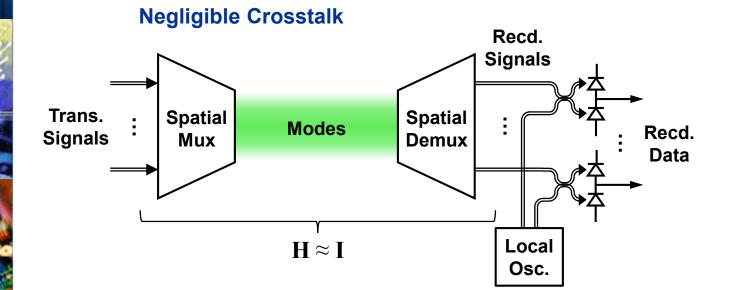
Imaging and Mode-Size Conversion (Gaussian Beams, Low Crosstalk)



- Can yield low crosstalk for Gaussian beams.
- Can demultiplex other mode sets, but resulting crosstalk necessitates MIMO equalization. This demultiplexing strategy is considered in analysis below.

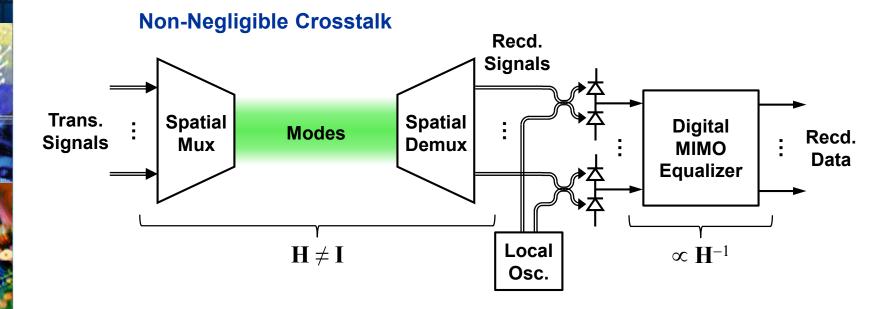
Coherent Detection Links

- Higher spectral efficiency.
- Higher receiver sensitivity.



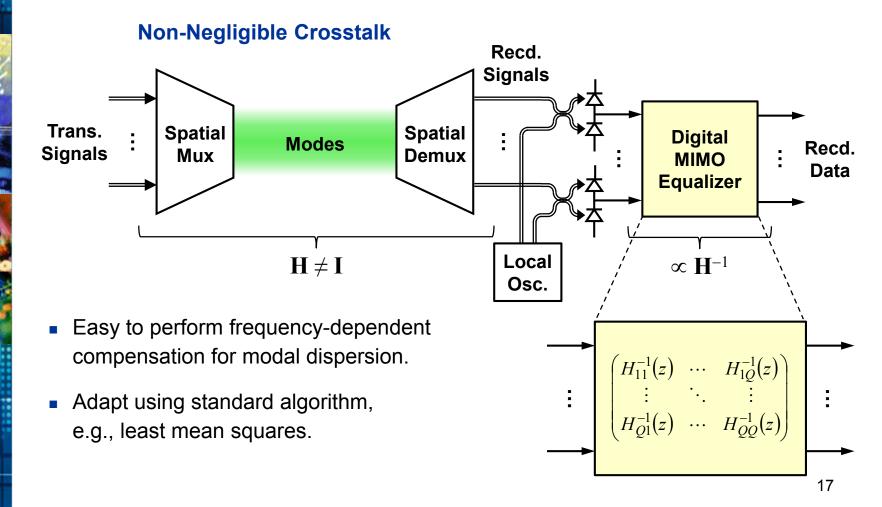
Coherent Detection Links

- Higher spectral efficiency.
- Higher receiver sensitivity.

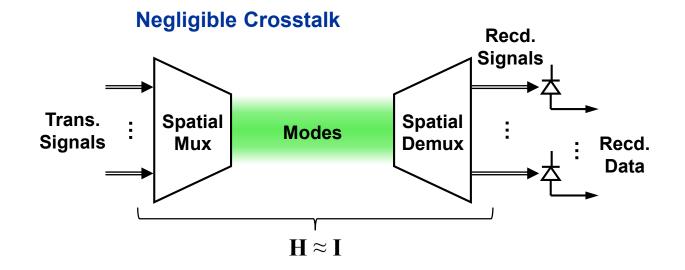


Coherent Detection Links

- Higher spectral efficiency.
- Higher receiver sensitivity.

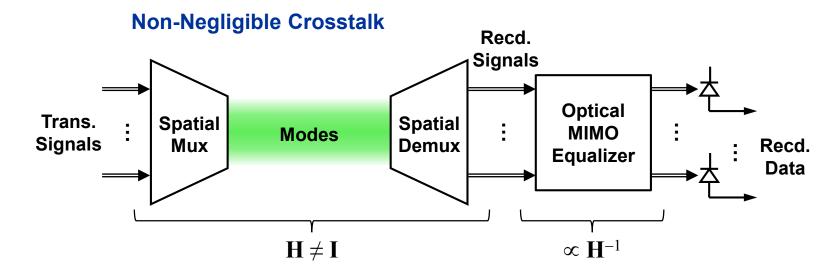


- Lower spectral efficiency.
- Lower receiver sensitivity.



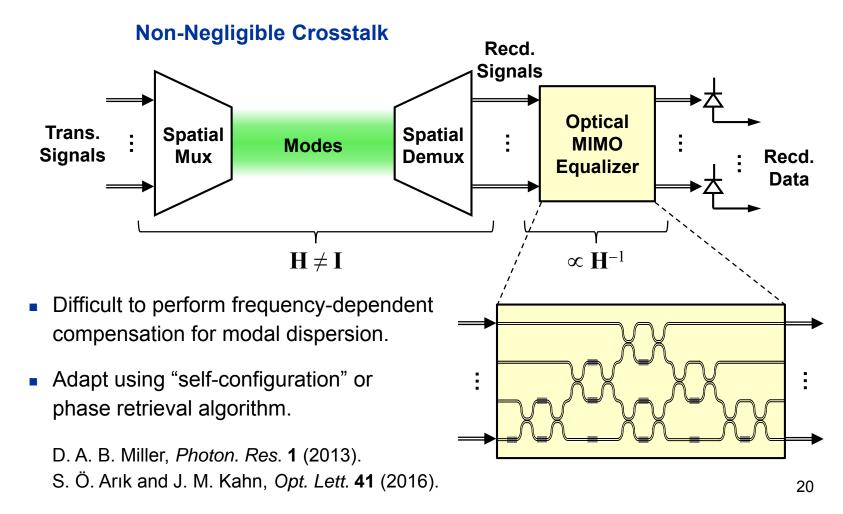
Direct Detection Links

- Lower spectral efficiency.
- Lower receiver sensitivity.



Direct Detection Links

- Lower spectral efficiency.
- Lower receiver sensitivity.



Outline

- (De)Multiplexers and Link Designs
- Physical Comparison: Counting Modes and Spatial Subchannels
- Information-Theoretic Comparison: Capacity and Degrees of Freedom
- Discussion

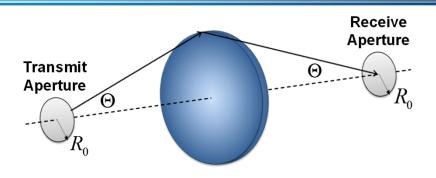
Capacity Limits of Spatially Multiplexed Links

- Use Q spatial modes to increase transmission capacity by a factor of Q.
 (Can use two polarizations to achieve 2Q.)
- Design system so all Q modes pass with roughly equal gains (near-unitary transmission matrix).
- Constrain diameter × numerical aperture (space-bandwidth product) and ask:

How does choice of mode set affect multiplexing gain *Q*?

N. Zhao, X. Li, G. Li and J. M. Kahn, Nature Photonics 9, 822 (2015).

Canonical Symmetric One-Lens Link



Given

 R_0 radius of transmit and receive apertures

 $NA = \sin\Theta$

numerical aperture of lens

the quantity

$$M = \frac{\pi R_0 NA}{\lambda} = \frac{V}{2}$$

is proportional to the link space-bandwidth product, and determines the number of modes that can propagate through the link.

- Provided no beam clipping occurs, the model can also describe:
 - Asymmetric one-lens link
 - Symmetric or asymmetric two-lens link
 - Ideal parabolic-index fiber

Counting Modes

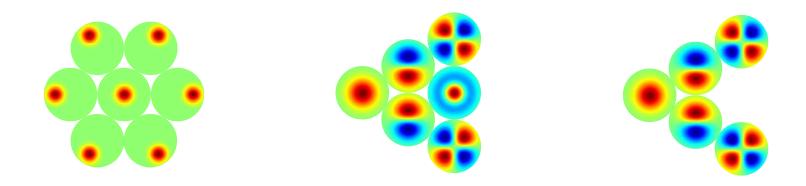
How many modes Q can propagate through an optical system described by

$$M = \frac{\pi R_0 NA}{\lambda} = \frac{V}{2} \quad ?$$

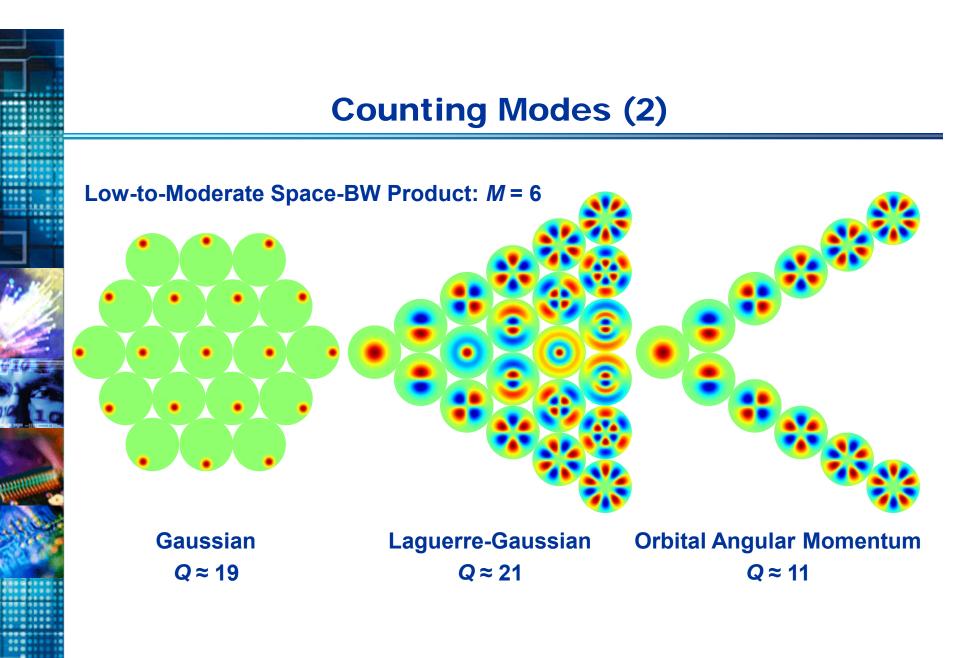
- This approach is approximate because:
 - The modes are not necessarily eigenfunctions of the optical system.
 - The optical system does not necessarily have a sharp cutoff.

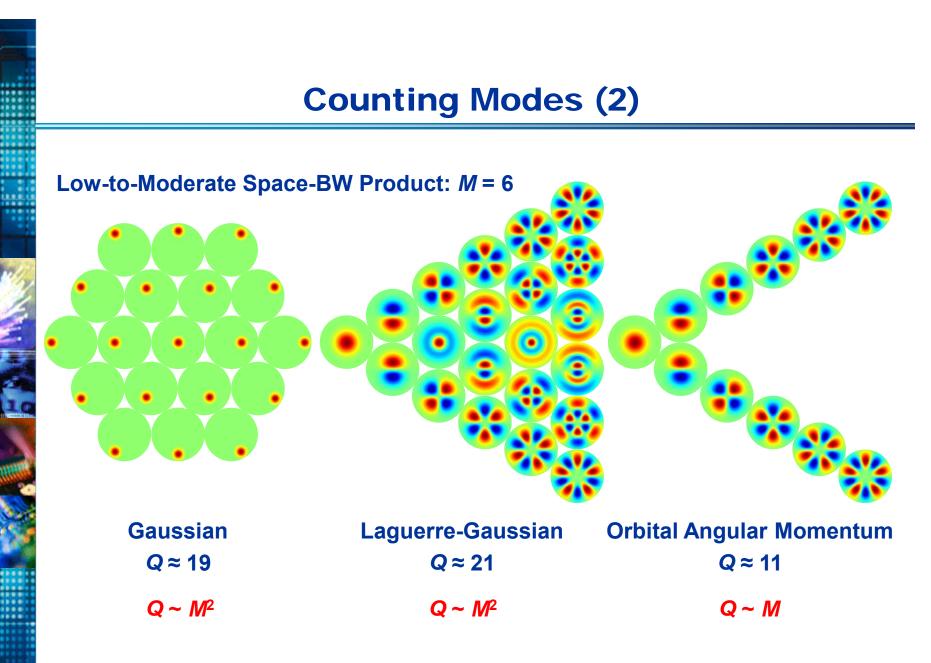
Counting Modes (2)

Very Low Space-BW Product: *M* = 3



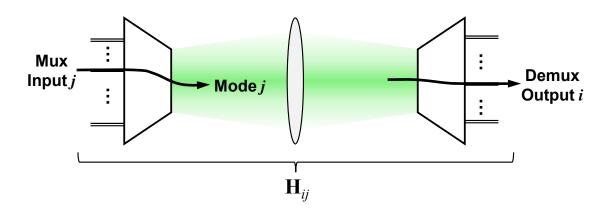
Gaussian	Laguerre-Gaussian	Orbital Angular Momentum
Q ≈ 7	Q ≈ 6	Q≈5





For details, see N. Zhao et al, *Nature Photonics* **9**, 822 (2015).

Transmission Matrix



- Assume ideal multiplexer and perfect alignment (for now).
- \mathbf{H}_{ii} is transmission coefficient between mode *j* and output *i*.
- H includes modes far beyond nominal cutoff determined by mode counting.

L-G, OAM and Gaussian Modes

- Consider imaging demultiplexer designed for Gaussian beams.
- Diffraction loss + crosstalk \rightarrow H is non-diagonal and non-unitary.

OAM Modes Only

- Also consider ideal OAM demultiplexer (optimistic).
- Diffraction loss \rightarrow H is diagonal and non-unitary.

Counting Spatial Subchannels

• Perform a singular value decomposition of the transmission matrix:

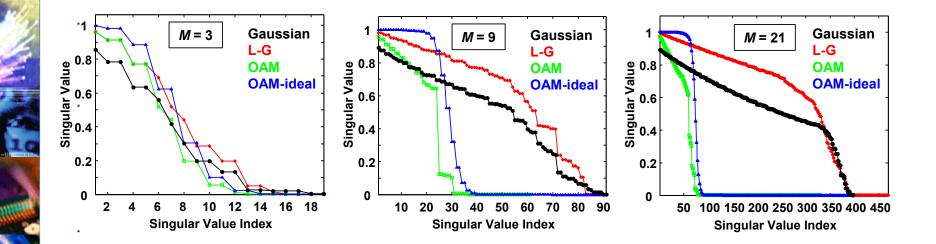
 $\mathbf{H} = \mathbf{V} \mathbf{D} \mathbf{U}^H$

- U and V are unitary matrices. Their columns are transmit and receive bases that diagonalize H into uncoupled spatial subchannels.
- **D** is a diagonal matrix of the singular values:

$$\mathbf{D} = \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_Q}\right)$$

• $\{\lambda_1, \dots, \lambda_Q\}$ are eigenvalues of **HH**^{*H*}, representing power gains of spatial subchannels.

Counting Spatial Subchannels



Outline

- (De)Multiplexers and Link Designs
- Physical Comparison: Counting Modes and Spatial Subchannels
- Information-Theoretic Comparison: Capacity and Degrees of Freedom
- Discussion

Capacity depends on:

- Operating SNR.
- Number of subchannels Q and their gains $\{\lambda_1, ..., \lambda_Q\}$.

Assume:

- Transmitter knows $\{\lambda_1, \dots, \lambda_Q\}$ and beamforming matrix U.
- Equal noise power σ^2 per receiver.
- Constraint on total transmit power $P = \sum_{q=1}^{Q} P_q$. Total SNR is $SNR = \frac{1}{\sigma^2} \sum_{q=1}^{Q} P_q$.

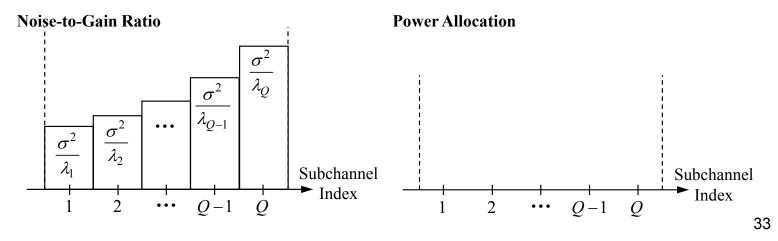
Capacity depends on:

- Operating SNR.
- Number of subchannels Q and their gains $\{\lambda_1, \ldots, \lambda_Q\}$.

Assume:

- Transmitter knows $\{\lambda_1, \dots, \lambda_Q\}$ and beamforming matrix U.
- Equal noise power σ^2 per receiver.
- Constraint on total transmit power $P = \sum_{q=1}^{Q} P_q$. Total SNR is $SNR = \frac{1}{\sigma^2} \sum_{q=1}^{Q} P_q$.

Optimal Power Allocation



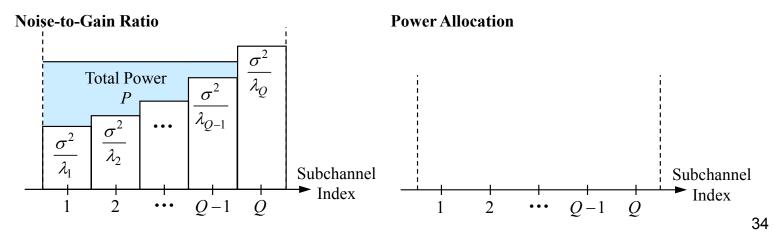
Capacity depends on:

- Operating SNR.
- Number of subchannels Q and their gains $\{\lambda_1, \ldots, \lambda_Q\}$.

Assume:

- Transmitter knows $\{\lambda_1, \dots, \lambda_Q\}$ and beamforming matrix U.
- Equal noise power σ^2 per receiver.
- Constraint on total transmit power $P = \sum_{q=1}^{Q} P_q$. Total SNR is $SNR = \frac{1}{\sigma^2} \sum_{q=1}^{Q} P_q$.

Optimal Power Allocation



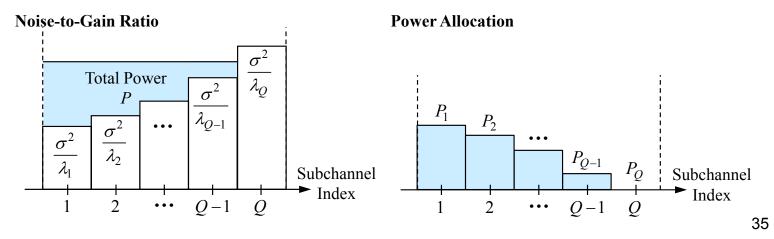
Capacity depends on:

- Operating SNR.
- Number of subchannels Q and their gains $\{\lambda_1, \ldots, \lambda_Q\}$.

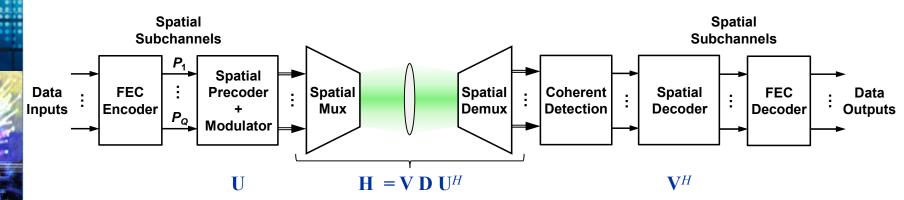
Assume:

- Transmitter knows $\{\lambda_1, \dots, \lambda_Q\}$ and beamforming matrix U.
- Equal noise power σ^2 per receiver.
- Constraint on total transmit power $P = \sum_{q=1}^{Q} P_q$. Total SNR is $SNR = \frac{1}{\sigma^2} \sum_{q=1}^{Q} P_q$.

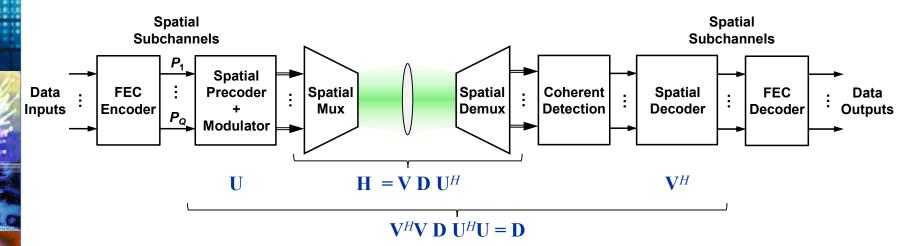
Optimal Power Allocation



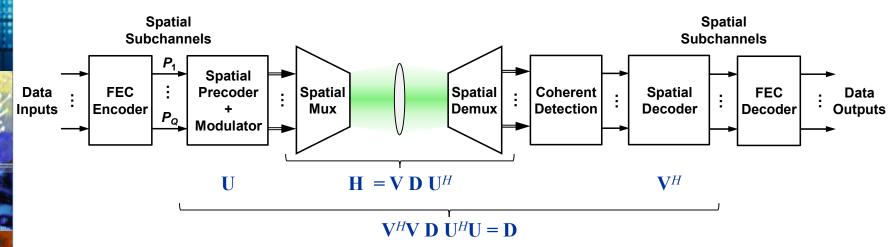
Channel Capacity (2)



Channel Capacity (2)



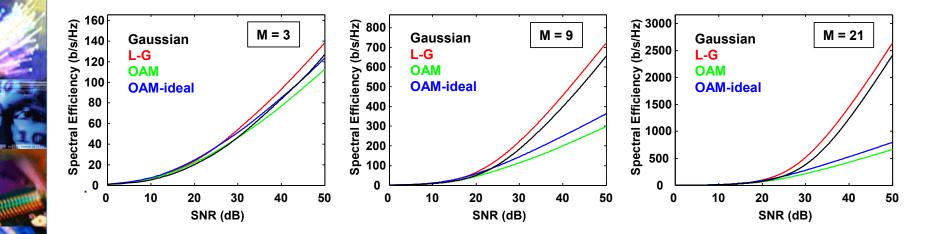
Channel Capacity (2)



• Capacity per unit bandwidth:

$$SE = \sum_{q=1}^{Q} \log_2 \left(1 + \frac{\lambda_q P_q}{\sigma^2} \right)$$

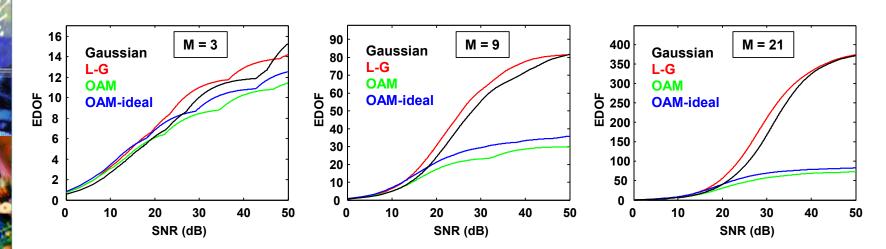
Channel Capacity (2)



Effective Degrees of Freedom

Number of subchannels effectively conveying information:

$$\left| EDOF = \frac{d}{d\delta} SE\left(2^{\delta} P\right) \right|_{\delta=0}$$



- Low SNR: power-limited, *EDOF* independent of *Q*.
- High SNR: mode-limited, *EDOF* approaches *Q*.

D.-S. Shiu et al, Trans. Commun. 48, 502 (2000).

Outline

- (De)Multiplexers and Link Designs
- Physical Comparison: Counting Modes and Spatial Subchannels
- Information-Theoretic Comparison: Capacity and Degrees of Freedom
- Discussion

Discussion

- In choosing a mode set for spatial multiplexing, one should consider:
 - Completeness of the set
 - Ease of implementation

Whether or not the set includes OAM is irrelevant.

- Given a space-bandwidth product *M*, a system should:
 - Operate at a multiplexing gain below the maximum Q.
 - Demultiplex to a complete mode set (L-G, H-G or Gaussian)

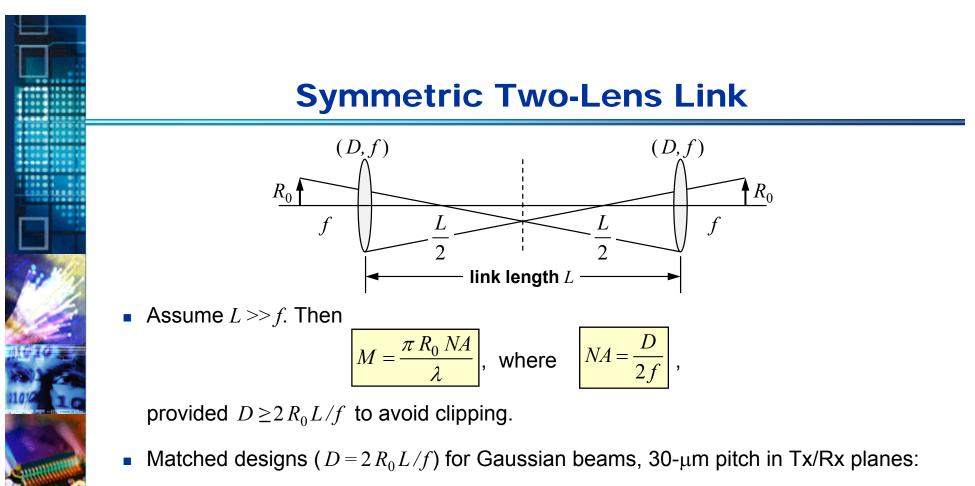
to optimize tolerance to:

- Misalignment
- Atmospheric turbulence
- Free-space communications is most compelling over long links, where:
 - Alignment and capturing the entire beam can be difficult.
 - Atmospheric turbulence can be significant.

These conditions are more favorable for WDM than SDM.

Do free-space links require more capacity than WDM offers?

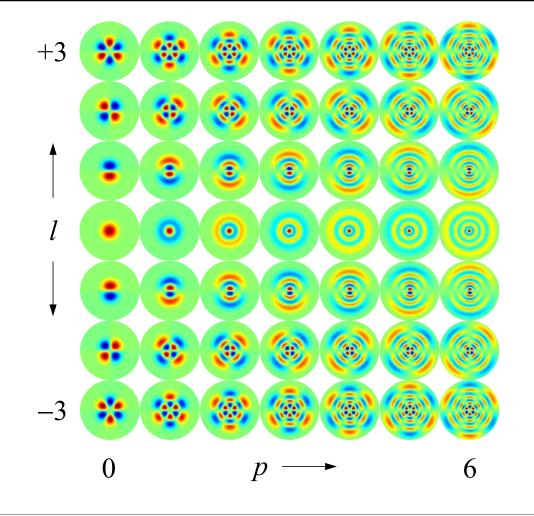
Backup Slides



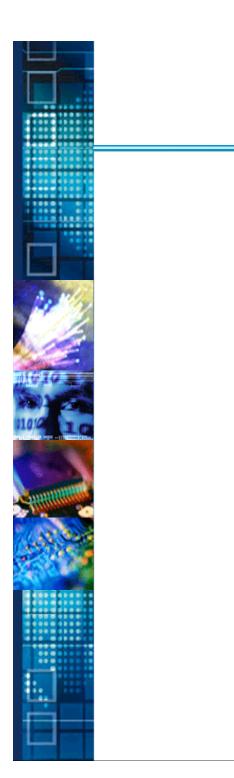
R_0 (µm)	f (cm)	D (cm)	NA	<i>L</i> (m)	М
65	12.5	1	0.04	10	5
65	125	10	0.04	1000	5
250	25	2	0.04	10	20
250	250	20	0.04	1000	20

L-G and OAM Modes

$$LG_{pl}(r,\phi) = \sqrt{\frac{2p!}{\pi(p+|l|)!}} \frac{1}{\omega_0} \exp\left(\frac{-r^2}{\omega_0^2}\right) L_p^{|l|}\left(\frac{2r^2}{\omega_0^2}\right) \left(\frac{r\sqrt{2}}{\omega_0}\right)^{|l|} e^{il\phi}$$

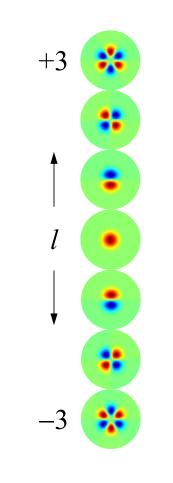


45



L-G and OAM Modes

$$OAM_l(r,\phi) = LG_{0l}(r,\phi)$$



Counting Laguerre-Gaussian Modes

• Laguerre-Gaussian mode of order (p, l):

$$LG_{pl}(r,\phi) = \sqrt{\frac{2p!}{\pi(p+|l|)!}} \frac{1}{\omega_0} \exp\left(\frac{-r^2}{\omega_0^2}\right) L_p^{|l|}\left(\frac{2r^2}{\omega_0^2}\right) \left(\frac{r\sqrt{2}}{\omega_0}\right)^{|l|} e^{il\phi}$$

m = 2 n + |l| + 1

Define mode order:

$$\omega_m = \sqrt{m} \,\omega_0 \qquad \text{r.m.s. waist size}$$

$$\theta_m = \sqrt{m} \,\theta_0 \qquad \text{r.m.s. divergence}$$

$$\frac{\pi}{\lambda} \,\omega_m \theta_m = m \qquad \text{space-bandwidth product}$$

 Modes up to order *m* = *M* can propagate through the system. Counting (*p*, *l*) such that 2*p*+|*l*|+1 ≤ *M*:

$$Q_{\rm LG/HG} \ge \frac{M(M+1)}{2}$$

• For tighter bounds, see N. Zhao et al, *Nature Photonics* **9**, 822 (2015).

Counting Laguerre-Gaussian Modes

• Laguerre-Gaussian mode of order (p, l):

$$LG_{pl}(r,\phi) = \sqrt{\frac{2p!}{\pi(p+|l|)!}} \frac{1}{\omega_0} \exp\left(\frac{-r^2}{\omega_0^2}\right) L_p^{|l|}\left(\frac{2r^2}{\omega_0^2}\right) \left(\frac{r\sqrt{2}}{\omega_0}\right)^{|l|} e^{il\phi}$$

m = 2 n + |l| + 1

Define mode order:

$$\omega_m = \sqrt{m} \,\omega_0 \qquad \text{r.m.s. waist size}$$

$$\theta_m = \sqrt{m} \,\theta_0 \qquad \text{r.m.s. divergence}$$

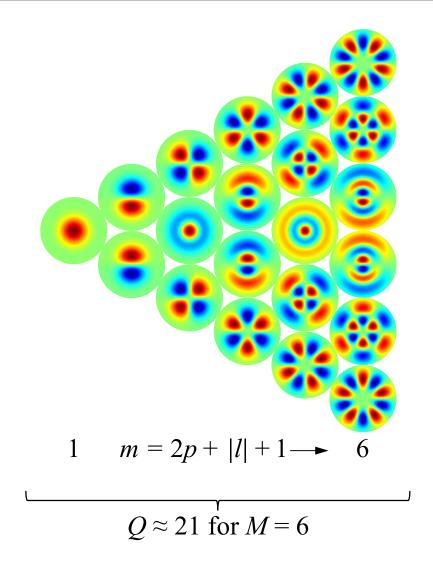
$$\frac{\pi}{\lambda} \,\omega_m \theta_m = m \qquad \text{space-bandwidth product}$$

 Modes up to order *m* = *M* can propagate through the system. Counting (*p*, *l*) such that 2*p*+|*l*|+1 ≤ *M*:

$$Q_{\rm LG/HG} \ge \frac{M(M+1)}{2} \propto M^2$$

• For tighter bounds, see N. Zhao et al, *Nature Photonics* **9**, 822 (2015).

Counting Laguerre-Gaussian Modes



49

Counting Orbital Angular Momentum Modes

• For a given *l*, the mode with p=0 has the smallest space-bandwidth product. OAM multiplexing typically uses modes with p=0:

$$OAM_l(r,\phi) = LG_{0l}(r,\phi)$$

 Modes up to order *m* = *M* can propagate through the system. Counting *l* such that |*l*|+1 ≤ *M*:

$$Q_{\text{OAM}} \approx 2M - 1$$

Counting Orbital Angular Momentum Modes

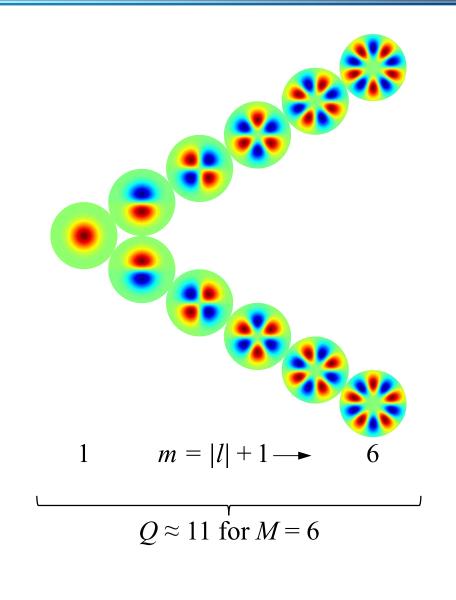
• For a given *l*, the mode with p=0 has the smallest space-bandwidth product. OAM multiplexing typically uses modes with p=0:

$$OAM_l(r,\phi) = LG_{0l}(r,\phi)$$

 Modes up to order *m* = *M* can propagate through the system. Counting *l* such that |*l*|+1 ≤ *M*:

$$Q_{\text{OAM}} \approx 2M - 1 \propto M$$

Counting Orbital Angular Momentum Modes



Counting Gaussian Beams

 Each Gaussian beam can have the same r.m.s. divergence angle as an *M*th-order L-G mode:

$$\theta_{0,G} = \theta_{M,LG}$$
 or $\frac{\lambda}{\pi \omega_{0,G}} = \frac{M\lambda}{\pi \omega_{M,LG}}$

Hence:

$$\omega_{0,\mathrm{G}} = \frac{\omega_{M,\mathrm{LG}}}{M} = \frac{\omega_{0,\mathrm{LG}}}{\sqrt{M}}$$

• The number of Gaussian beams that fit in the same area as as an *M*th-order L-G mode is equivalent to the number of circles of radius $\omega_{0,LG}/\sqrt{M}$ that fit in a circle of radius $\sqrt{M}\omega_{0,LG}$, which is estimated to be:

$$Q_{\rm G} \le 0.9 \, M^2$$

This bound is loose for small *M*.

Counting Gaussian Beams

 Each Gaussian beam can have the same r.m.s. divergence angle as an *M*th-order L-G mode:

$$\theta_{0,G} = \theta_{M,LG}$$
 or $\frac{\lambda}{\pi \omega_{0,G}} = \frac{M\lambda}{\pi \omega_{M,LG}}$

Hence:

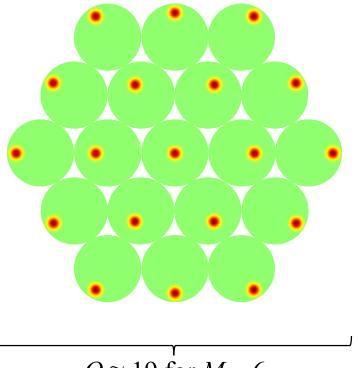
$$\omega_{0,\mathrm{G}} = \frac{\omega_{M,\mathrm{LG}}}{M} = \frac{\omega_{0,\mathrm{LG}}}{\sqrt{M}}$$

• The number of Gaussian beams that fit in the same area as as an *M*th-order L-G mode is equivalent to the number of circles of radius $\omega_{0,LG}/\sqrt{M}$ that fit in a circle of radius $\sqrt{M}\omega_{0,LG}$, which is estimated to be:

$$Q_{\rm G} \le 0.9 \, M^2 \quad \propto M^2$$

This bound is loose for small *M*.

Counting Gaussian Beams



$$Q \approx 19$$
 for $M = 6$

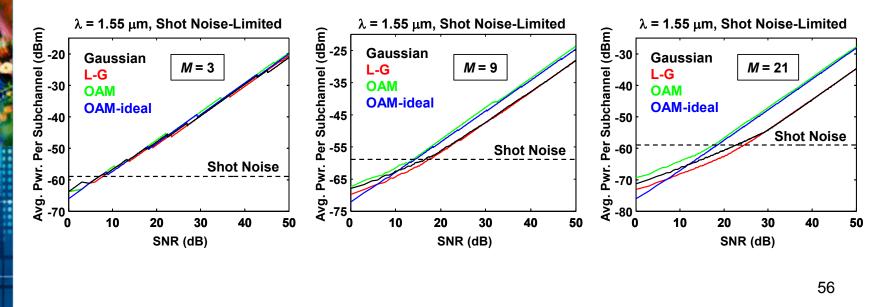
Transmitted Powers

Assume

- $R_{\rm s}$ = 10 Gbaud, λ = 1550 nm.
- Shot noise-limited coherent receiver with noise variance per receiver corresponding to one photon per symbol:

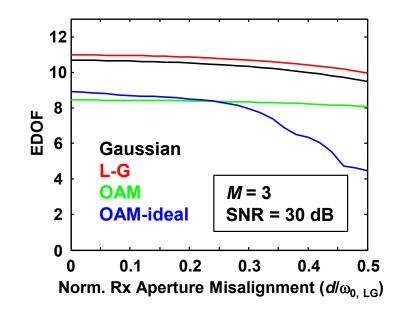
$$\sigma^2 = \frac{hcR_s}{\lambda} = -59 \,\mathrm{dBm}$$

Average Transmit Power per Subchannel



Impact of Receiver Misalignment

• Consider M = 3, where OAM is most competitive.



- OAM with ideal demultiplexer tolerates least misalignment because of phase mismatch.
- Gaussian, L-G or OAM with imaging demultiplexer tolerate greater misalignment.