Megaelectron Volt Computed Tomography at Site 300

Alex Dooraghi, Jerel Smith, Joe Tringe and Bill Brown
X-ray computed tomography at Site 300

- X-ray computed tomography (CT) is a nondestructive imaging modality that requires x-ray projections at various orientations to reconstruct an object.
- At Site 300 we use Megaelectron Volt (MeV) CT to diagnose operation of conventional weapons.
- The Site 300 system uses a dual capability (6 MeV or 9 MeV) x-ray source with a digital detector panel.
- MeV x-ray CT systems are used to image radiographically dense objects.
- Concern: As x-ray energy increases, (1) image contrast decreases and (2) safety considerations increase due to expanded radiation dose fields.
- Our interest is examining Monte Carlo methods, specifically MCNP, to characterize image contrast and radiation dose field with the objective of maximizing image quality and minimizing radiation field.
Three concerns motivate our investigation

**Concern 1:**
Contrast is reduced with higher energy x-ray systems

Dzierma et al (2014)

**Concern 2:**
Contrast is reduced by object scatter, which becomes more significant with increasing energy

**Concern 3:**
High radiation doses

- LD50 is the amount of a material, given all at once, which causes the death of 50% (one half) of a population
- The LD50 for x-ray radiation is 5 Gy
- The x-ray system at Site 300 can produce 30 Gy per minute 1 meter from target. Dose is reduced by:
  - Distance
  - Shielding
  - Time
Goal: Simulate MeV CT system design to maximize the image quality and minimize radiation dose field

MCNP6 is a general-purpose Monte Carlo code used to simulate neutron, photon, electron, or coupled neutron/photon/electron transport
MCNP has a built-in framework for Monte Carlo radiographic simulation to accelerate convergence.

Framework allows for scatter evaluation.

Default MCNP Detector Response Options

- Energy Independent
- Energy Dependent

Relative Response vs. Energy
Simulation Performed

1. How well does the MCNP simulation match the measurements?

2. How much of an improvement in image quality does MCNP predict from scatter reduction?

3. How well can we simulate the radiation field at site 300?
Simulation Performed

1. How well does the MCNP simulation match the measurements?

2. How much of an improvement in image quality does MCNP predict from scatter reduction?

3. How well can we simulate the radiation field at site 300?
Measurement data was taken using a 6 MeV x-ray spectrum.

Object:
Cylindrical munition component principally composed of HMX, tungsten and aluminum encased in carbon fiber.

X-Ray Spectrum:
6 MeV spectrum filtered with 3.175 mm of tantalum.
Measured and simulated radiographs were processed to compare attenuation

1. Measured images \((I_m)\) were processed as follow:

\[
I_m = -\ln \left( \frac{(I - I_d)}{(I_o - I_d)} \right) = \int \mu \, dL
\]

where
- \(I\) : Image with x-rays on and object in field of view
- \(I_o\) : Image with x-rays on but no object in the field of view
- \(I_d\) : Image with x-rays off
- \(\mu\) : Linear attenuation coefficient \((\text{mm}^{-1})\), which is a function of atomic number, density and x-ray energy
- \(L\) : Material thickness (mm)

2. Similarly, simulated images \((I_s)\) were processed as:

\[
I_s = -\ln \left( \frac{I}{I_o} \right) = \int \mu \, dL
\]
Simulation that includes an energy dependent detector response and scatter best approximates measurement.

<table>
<thead>
<tr>
<th>Detector Response (DR)</th>
<th>Primary</th>
<th>Primary and Scatter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Independent (EI)</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Energy Dependent (ED)</td>
<td>5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Percent deviation from measurement (%)
Simulated reconstruction deviates by < 1 %

Simulation assumes energy dependent detector response and includes scatter
Simulation Performed

1. How well does the MCNP simulation match the measurements?

2. How much of an improvement in image quality does MCNP predict from scatter reduction?

3. How well can we simulate the radiation field at site 300?
At Site 300 we acquired CT data of a conventional explosive warhead using a 9 MeV spectrum.
Focus of analysis was on radial plate

Measured CT slice through radial plate

- Polycarbonate
- Explosive 3 (Main Charge)
- Aluminum
- Explosive 2 (Boosters)
- Explosive 1 (Detonation Chain)
Simulation 1 considers primary and scatter

Measurement

Simulation 1 (Primary and Scatter)

Provided models:
1. Energy spectrum
2. Detector response
Simulation 2 considers only primary

Scatter reduces linear attenuation values ($\mu$) for all materials near and within the radial plate.
Slit collimation was simulated to evaluate effect on contrast.
Slit aperture effectively reduces scatter

Profile of simulation 3 (primary and Scatter, Slit) overlaps simulation 2 (primary only)
Slit collimator can recover reduced contrast due to object scatter

\[ \text{Contrast} = \frac{ROI_2 - ROI_1}{ROI_2 + ROI_1} \]

Note: ROI_i: region of interest in material i

### Contrast Results:

<table>
<thead>
<tr>
<th></th>
<th>Polycarbonate to Explosive 1</th>
<th>Polycarbonate to Explosive 2</th>
<th>Polycarbonate to Explosive 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE Simulation 1 (P &amp; S)</td>
<td>0.0691</td>
<td>0.1313</td>
<td>0.1079</td>
</tr>
<tr>
<td>PE Simulation 2 (P)</td>
<td>0.0889</td>
<td>0.1691</td>
<td>0.1254</td>
</tr>
<tr>
<td><strong>Percent Change (%)</strong></td>
<td><strong>29</strong></td>
<td><strong>29</strong></td>
<td><strong>16</strong></td>
</tr>
<tr>
<td>PE Simulation 3 (P &amp; S, slit)</td>
<td>0.0878</td>
<td>0.1677</td>
<td>0.1246</td>
</tr>
<tr>
<td><strong>Percent Change (%)</strong></td>
<td><strong>29</strong></td>
<td><strong>29</strong></td>
<td><strong>15</strong></td>
</tr>
</tbody>
</table>
Summary

- Site 300 uses MeV CT to diagnose operation of non-nuclear weapon components
- MeV CT enables interrogation of items that may be too radiographically dense for keV systems
- Three concerns when using MeV CT:
  1. contrast is reduced with higher energy x-ray systems
  2. contrast is reduced by scattered radiation which becomes more significant with higher energy x-rays
  3. high radiation fields
- Goal of this work is to simulate MeV CT system to optimize design that maximizes image quality and minimizes radiation dose field
- Currently, we are using the MCNP Monte Carlo radiation transport code to evaluate:
  1. radiographic framework to assess detector response and scatter
  2. benefits of scatter reduction techniques
  3. radiation field at Site 300
Acknowledgements

NDE Radiographer Team
John Rodriguez (Senior Supervisor)
Kenn Morales
Luke Schrimsher

Health Physicists
Chad Hopponen
Eric Galicia

Feedback
Harry Martz
Aditya Mohan
Owen Mays
Ray Obenauf
Rosa Morales
Ian Ladner
Logan Bekker
Joshua Deotte