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Graphs are Everywhere

Graphics

Social Networks Medicine
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Undirected Graphs — Basic Notations

0 Graph G = (V, E, w).
NS d N Adjacency matrix A
) 0.8 Degree matrix D = diag{d;}
)N i Laplacian matrix L = D — A.
®e : Normalized Laplacian matrix
¢« s L =D"Y2LD~1/2
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Signals on a Graph can be as Interesting as the
Graph Itself

Graph signal: a function f:)V — R that assigns real
values to each vertex of the graph

= Examples:
— Brain networks and fMRI signals
— Gene regulatory networks and gene expression levels
— Social networks and information cascades

. JD Analyze characteristics of the
| signal by exploiting the graph
structure
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Connection to Fourier Analysis — Eigenvectors as
Frequencies

THE “CLASSICAL” GRAPH : ANY GRAPH :

By analogy, any graph’s Fourier
modes are the eigenvectors of its
Laplacian matrix L.

All classical Fourier modes are the
eigenvectors of L
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Graph Fourier Transform

= Using the eigenvectors of the Laplacian, we can define

GFT N IGFT N—1
F(Xe) := (£, ug) = f(i)uj (i) FG) =) F)ue(i)
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Graph Filtering is the Key to Designing Graph
Convolutional Neural Networks

Graphs vs Euclidean grids

» Irregular sampling.
» Weighted edges.

A graph filter H: RV — RN is a map between graph signals

Focus on linear filters

= map represented by an .°°,
N x N matrix

Fout(Ae) = Fin(Ae)R(Ne)
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Graph Convolutional Networks Learn a
Sequence of Graph Filters

Hidden layer Hidden layer
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Chebyshev Approximation gz * X = 0pX — 91D_1/2WD_1/2X‘
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Problem: Using Graph CNN for Autism Spectrum

Disorder Classification

ROls

Resting Time-Series
State fMRI Extraction

Spatio-Temporal Modeling Patient
Statistics

Similarity

Predictive
Model

Label

Neuropathology studies map variations in brain functionality to clinical measures

Population Graph Design

Non-imaging features (e.g.
gender/site) or combination of
imaging and non-imaging
features

Signal Construction

Statistics from imaging
features (e.g. fMRI)
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Fine-Tuning Graph CNNs is Highly Challenging
due to their Sensitivity to Graph Design

Random Graph Predictive Modeling
Ensemble

—
I =

Features

Softmax Output

T -'
. o

Population graph Features

— ¥ Consensus Class Label

N-dimensional @ T
feature per node

We adopt a bootstrapping approach that performs dropout in the
input layer of the network
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Results: Autism Brain Imaging Data Exchange

Initiative

= 872 patients from 20 different sites

= Signal Construction: Upper-Triangular part of covariance matrix + PCA

Baselines

Linear SVM

64.71

(Gender, Site)

67.7

Kernel SVM

65.72

Linear Kernel +
(Gender, Site)

67.7

Graph Kernel +
(Gender, Site)

68.28

Bootstrapped Graph CNNs improve the prediction accuracy on the

challenging ABIDE dataset
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Problem: Neighborhood Graph Construction is
Sensitive to Sample Density and Noise

= Same signal defined on different graphs can lead to completely
different results.
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Idea 1: Graph Auto-Encoders can Recover the
Optimal Embeddings for Data

= Auto-encoders aim to minimize the reconstruction loss

Loss(61,6; Zl xi, 8 (f (xi; 61); 62))

= The “reconstruction nature” of spectral clustering can be viewed

as an auto-encoder
/ Laplacian Matrix

argmin |[W — W||r = USVT, st. rank(W) =k
W

= Using L2 loss — Hidden features will converge to the smallest
eigenvectors of the Laplacian matrix
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Idea 2: Spectral Embedding with Quantile Loss
Enables Robust Sparsification of Graphs

Piecewise Linear Quadratic Loss typically used
’ to explore heterogeneous datasets

min p, (W — LR")

LR

T|r| — ”TTZ if r < —7k,
pr(r) = 5=1? if r € [—k7, (1 —7)K],

A=7)r| = A2 it > (1 1)k,

Low-rank decomposition of
the similarity matrix

b Lawrence Livermore National Laboratory

AL NT

N A S"oé =
£

National Nuclear Security Administration



Idea 2: Spectral Embedding with Quantile Loss
Enables Robust Sparsification of Graphs

min p, (W — LRT) Low-rar)k cllecomp.osition of
L,R the similarity matrix
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Conditional Quantiles of the Similarity Function
Reveal the Importance of Edges

Rate of Decay

Edge Probabilities
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Using the Locally-Scaled Graphs in Semi

Supervised Label Propagation

= Given a few labeled examples and a neighborhood graph,

propagate labels to all samples — Greedy random walk

Extreme Case — 1 Labeled Node

Blood Transfusion
Breast Cancer
Echocardiogram
Kidney Disease
SPECT Heart
Thoracic Surgery

Arcene

76.1
82.7
70.1
66.8
70
65.3
59

771
84.9
73.2
67.5
68.5
66.2
61.4

Local Path- Proposed
Approach

84.9
90.5
88.49
71.9
86
75.8
7.3
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Conclusions

= Graph signal processing provides a convenient framework for a
wide variety of data analysis problems.

= Can be highly effective in fusing imaging and non-imaging
features in a neural network setting

= Generalized deep networks for data on non-uniform grids — the
new kid on the block

= Use of appropriate loss functions can lead to robust graph
constructions

= Applies to problems in supervised, unsupervised, semi-
supervised, transfer learning...
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Questions?

Contact

Jayaraman J. Thiagarajan

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Email: jjayaram@lInl.gov



