Flexible Analysis of Electronic Medical Record Data with Composite Mixture Models

Michael Mayhew¹, Brenden Petersen¹, Ana Paula Sales¹, John Greene², Vincent Liu², Todd Wasson³

¹Computational Engineering Division, Lawrence Livermore National Laboratory
²Division of Research, Kaiser Permanente Northern California
³LinkedIn, Inc.

CASIS
May 17, 2017
Towards Mortality Risk Stratification in Sepsis

- Sepsis is *costly*
 - As of 2011, sepsis affects nearly 1 million Americans in hospitals (28-50% mortality) and costs nearly $20 billion every year

- Sepsis is *heterogeneous* in its presentation
 - Elderly, young, immuno-compromised and those with pre-existing conditions are particularly at risk

- Sepsis is *difficult* to recognize and treat
 - Fever, chills, rapid breathing and heart rate, disorientation & confusion
 - Mortality increases by 7.6% with every hour antimicrobial administration is delayed after onset of hypotension (Kumar et al., 2006)

http://sepsistrust.org
Sepsis Detection and Treatment at Kaiser Permanente Northern California

- Clear and present need to:
 - Stratify patients accurately using all relevant observations
 - Detect physiological changes associated with adverse outcomes as early as possible
 - Identify clinically actionable signatures of physiological deterioration of patient
Composite Mixture Models: Flexible Analysis of Multi-Typed Data from Heterogeneous Populations

\[
\Pr(x|\Theta) = \sum_{k=1}^{K} \pi_k \prod_{i=1}^{|x|} \Pr_i(x_i|\theta_{k,i})
\]

- We assume that:
 1. Population is heterogeneous (can be divided into subgroups or components)
 2. Each observation dimension can be modeled with an appropriate univariate, exponential family distribution (Pr_i)
 3. Observation dimensions are independent of one another given mixture component

- Complex dependencies can be recovered by averaging over a sufficient number of mixture components

Sales et al., 2013; Wasson & Sales, 2014
Description of KPNC EMR Analysis Cohort

- **EMR observations:**
 - Are both static (e.g. gender) and dynamic (e.g. patient vital signs)
 - Are both discrete (e.g. diagnosis codes) and continuous (e.g. acute disease burden)
 - Tend to have missing entries

- **53,659 emergency department hospitalizations (~46k patients)**
 - Minimum of 12-hour stay
 - At least 3 vitals obs. at 3 hours of stay
 - Patient had suspected or confirmed infection
 - Mortality rate: 6.4%, Mean age: 67yo, 51% female

- **Admission/Demographic features:**
 - age, sex
 - LAPS2, COPS2 – measures of acute & chronic illness, respectively
 - Kaiser-specific variables (Facility code, Membership indicator, Transport from non-KP facility indicator)

- **Vitals features:**
 - Median, max, min, and standard deviation at 3, 6 and 12 hours post-admission
Inferred Physiological Space is Complex

- Patients associated with different clusters over hospitalization
- Some clusters appear transient
- Clusters show different enrichment for mortality events
CMMs Reveal Temporal Patterns that Aid Risk Stratification of Septic Patients

- Cluster trajectories consist of joint cluster assignments at 3, 6 and 12 hours post-admission of each episode

- Shown are top 18 trajectories associated with mortality events
CMM-Based Cluster Analysis Identifies Physiologically Distinct Sub-Populations

- LAPS2 and COPS2 are KPNC measures of *acute* and *chronic* disease burden, respectively.

- Shown are estimated differences between physiological features from mortality-enriched CMM clusters 1, 3, and 10 at 12h post-admission.
CMMs Enable Visualization of Physiological Trends Associated with Elevated Mortality Risk

Median Body Temperature (12h Post-Admission)

Body Temperature Std. Dev. (12h Post-Admission)
CMMs Can Enhance Missing Data Imputation Performance

Distance relative to population mean imputation

Feature

Imputation method
- Cluster mean imputation (complete records)
- Cluster mean imputation (population mean imputation)
- MICE (predictive mean matching)
Acknowledgements

- Ana Paula Sales
- Todd Wasson (LinkedIn, formerly of CED/ENG)
- Priyadip Ray
- Brenden Petersen

- Dr. Vincent Liu
- John D. Greene
- Jennifer Baker