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Overview

= We want to distinguish between vehicles detected in surveillance imagery.
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Vehicle Retrieval
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We will use deep convolutional neural networks to learn robust image representations.
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Data

= Vehicle ID (VID) dataset: CVPR 2016 paper”
= Largest instance-level dataset of vehicles

= Color images acquired by multiple surveillance cameras in China
— varying spatial resolutions, various backgrounds, variety in illumination

— 26,328 unique vehicle instances (at least 2 images/instance, average of ~8 images/instance)
— Instance annotations generated using license plate information

— High resolution, oblique overhead viewing geometry (front, rear)

Train 13164 113346
Test 13164 108221
TOTAL 26328 221567

*Liu et al., Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles, at CVPR 2016.
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*Liu et al., Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles, at CVPR 2016.
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Fine-grained Vehicle Recognition

= Utilize ideas found in FaceNet” (Google) for facial recognition

= Train a CNN to learn a compact feature space (128D) representation where distances
directly correspond to a measure of vehicle similarity
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What is a Triplet?

*Schroff et al., FaceNet: A Unified Embedding for Face Recognition and Clustering, at CVPR 2015.
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= During training, the network is presented with batches of cleverly sampled triplets.

= Atriplet is a selection of three images < x{*, xf, x;"> for a given vehicle instance i.
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*Schroff et al., FaceNet: A Unified Embedding for Face Recognition and Clustering, at CVPR 2015.
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Training

No Semantic Organization Vehicles Distinguishable

Images of same vehicle are close; images of different vehicles are farther apart.
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= Pimages per vehicle

= Q vehicles from dataset
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Randomly select negatives to generate N triplets

Generate all anchor-positive combinations: N = (2>
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Vehicle Retrieval

= Asks the question: “Given a new image of a vehicle, how reliably can we find

previously seen instances of it?”

I A

# of vehicles 1600 2400 3200 6000 13164
# of images 6493 13377 19777 26353 48922 108221

Test Data Splits for VID Dataset.

Suppose we have N; images for vehicle i in a given test set.

Randomly place N; — 1 images for vehicle i into gallery set.

Place remaining image of each vehicle into probe set.

= Evaluation metric: mean average precision (MAP)
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Mean Average Precision (MAP)

Probe (query)

Gal/ery instances

Ranking #1
Recall 0.20 0.40
Precision 1.0 1.0

Ranking #2

Recall 0.20 0.40 0.60 0.60 0.60 0.80 .
Precision 1.0 1.0 1.0 0.75 0.60 0.67 0.714

AP for Ranking #1: (1.0 + 1.0 + 0.75 + 0.57 + 0.625 )/5 = 0.789
AP for Ranking #2: (1.0+ 1.0+ 1.0 + 0.67 + 0.714 )/5 = 0.8768
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Quantitative Results

Ours - Inception 224x224 0.7771

Ours - Inception 96x96 0.7509
Ours - Inception 48x48 0.6927
Ours — ResNeXt 32x32 0.6461

MAP of Retrieval Task as a Function of Image Resolution and Gallery Size with ngy;q;s = 10.

*Liu et al., Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles, at CVPR 2016.
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Questions?
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