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Motivation: Search

e Classic problem in WW II: submarine search
- Assignment of search patrols (air, surface) to locate in suspected areas
- Key problem: not guaranteed to find when searching an area
- Limited visibility, range, intelligent adversary
- Book: Search and Screening — B. Koopman 1946
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e Unmanned and manned vehicles in coordinated monitoring
- Detection, tracking, classification of objects, activities, ...

< _Hierarchical Control and Communications




Motivation: Diagnosis

e Medical diagnosis, fault detection in components, ...
- Key aspect: Imperfect tests

- Need to interpret collected measurements, identify what additional
information is needed

- Information costs matter

Image by J. Wang (2016)



Motivation: Security

e Checkpoint of the future: many possible tests
- Exploit real-time information for flexible routing through stations
- New tests under development
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Checkpoint of the future (IATA 2010)



Problem Features

Opportunity for selecting measurements sequentially

Information processed from previous measurements to select
future measurements
- Feedback

Meaningful mission objectives to guide selection of
measurements

Correct diagnosis

Detection

Estimation accuracy

Classification accuracy

Important issue at the heart of the problem: Value of
information

So, what do we know about these problems?




Focus on 3 problems

e Discrete search

- Finding object of interest in extensions of classical search
theory models

e Dynamic search with information theoretic objectives
- New class of search models with full adaptive solutions

e Adaptive test sequencing for detection
- Learning adaptive decision rules from training data



Feedback to control information

e Feedback Control - Active Sensing
- Focus on changing dynamics - Focus on changing observations
O——| Dynamical » Observed Dynamical 0| Observed
1 System Signals System 1 Signals
Controller | Sensor |,
Manager
* Implicit Assumption Action |« Estimation/
- Rapid, automated processing of Selection Fusion

observations to generate “state”
information



Search Theory

Simple model: Stationary object, finite locations, prior
probability of object location (Stone, Kadane, ...)

Simple action model: look only in
one place P P, P,

Simple sensor model
- Search of an area yields detect or not P, Ps Pg
- P4<1, but no prob. false alarm

- Conditionally independent detections; no switching or travel costs

Objectives
- Maximize probability of detection/minimize time to detection

- Whereabouts search: Maximize probability of identifying correct location
after fixed effort




Problem setup

e Notation
- Locationsi=1, ..., N; object location x € {1, ...., N}
- p, is probability of detection when searching location i if object is there
- Initial probability distribution 7t,(0) = P(x = i)
- Decision u(t) € {1, ...., N} = search location i
- Information after measurement at t: I(t) = {u(1), u(2), ..., u(t)} ()

e Bayesian information dynamics

mi(t—=1)(1—p;)
P(z|I(t)) = m(t) = {1m(t1)+(m(1i)1)(1pi)

s t—

1—m(t—1)4+m;(t—1)(1—p;) U(t) — .7 # !




No feedback needed!

* Typical feedback structure: decision tree
Observmﬂgc

>O

Observation

Decision

Not

e Search feedback structure detect
Not Decision O
Decision 60{8 O
detec
STOP O
STOP

- Future decisions needed only if no detection
- Solve as a sequence of actions, not a feedback law
- Operations research vs stochastic control



Optimization Form

* Prob. object is at i and is not detected after observations I(t):
t
mi(0)(1 — p;)™") where n;(t) =) T(u(k)=1)
k=1

e Objective: minimize probability of no detection with searches
uptoT:
N T
min Yy m(0)(1 = p;)" ") such that ny(T) = Y T(u(t) =)

e Solution:
- Feedback form: At time t, search the location with highest m(t-1).

- Open-loop: Sort {m;(0)p;(1 —p;)*,i=1,...,N;k=0,...,T}
in decreasing order and select the T largest. Search the locations in that

order.



Extensions

e Whereabouts search

N
. (1 — () (1 — p. i (T)
u(l)r,r.l?;(ﬂ{;m(()) <1 (1 —p;) )—|—mzax7rl(1 Di) }
e Optimal strategy:

- Feedback form: At time t, search the location with second highest m (t-1).
- Open-loop form available: search optimally among all except highest m,(0)

Locations

e Other extensions: multiple sensors, srcwcsbin oy € 01

sparse coverage constraints N, le\\
o
Yij €{0,1}

N I E cost —py;j,j > 0
Ykj € {0,1}

cost —pgj,j > 0




Extensions

Sparse accessibility Locations

Agents \\>

vk €1{0,1}
cost —pgj,j >0

vk;j € {0,1}
cost —pgj,j > 0

e Convert to network optimization

- Integer program with unimodular constraints
- Fast algorithm developed Ding-C.’17 -- complexity
M

O(N|A|) where N = Z Np,

m=1



Results

e Sample search: 9 UAVs with limited field of reeard
- P4sfrom 0.7t0 0.9
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Can we improve sensor model?

e Assume we have both false alarms and missed detections
- Observationyin {0,1}
- P(y=1 | object present) = p,, P(y = 1| object absent) = q,
- Action u(t) yields measurement y(t)
- Information after measurement at t: I(t) = {u(1),y(1), ..., u(t), y(t)}

e Bayesian dynamics

( Wi(t—l)pi

(T 1) tr, T, u(t) =14,y(t) =1
, — e u(t) =14,y(t) =0
Pla =i[I() = m(t) = § Um0 T
(1—7Tj(t—l))_Q(%+7IT)7-((f—1?§9j W) =J7 690 =
| T=m D —a)Fm ena—py 40 =7 #6y(t) =0



...With great difficulty!

e Objective: Given T observations,

max {maX m(T)} such that ~v¢(Z(t — 1)) = u(t)
Y1 seeos YT 7

e Only one known characterization of optimal strategies (C.95)
- Special case: p;=1-q;=p

- Optimal feedback strategy: at time t, measure the location with either the
largest or second largest m(t-1)

- Myopic strategies optimal for dynamic model

e Results do not extend to multiple searchers, non-symmetric
error probabilities, ...
- Must resort to stochastic control approaches

- Stochastic dynamic programming for partially observed process

- C.”97, Evans and Krishnamurthy ‘01, Wintenby and Krishnamurthy’06,
Kreucher et al '06: Bashan et al’08, C.’05, C.-Hitchings ‘10, ‘11...

- Or alternative formulations — information theory, e.g.



Information Theory and Search

Information theory: quantitative measures of information and
uncertainty

Given conditional distribution m,(t-1), can measure entropy

m(t—1)) Z J(t — 1) log(m;(t — 1))

=1

Heuristic strategy for active sensing: Select location to search that
maximizes expected reduction in entropy (Kastella ‘95, many others)

ult) = arg _min (J(r(t 1) = By (x(O]u(t) = i, (1))

Equivalent to maximizing expected KL divergence between m(t-1), mt(t)

Computable for simple problems (e.g. search, not too many locations),
but no guarantee of dynamic optimality (myopic, one-stage lookahead)

And weak correlation with mission metrics (entropy vs location)




Change search problem

e Object located in compact subset of Euclidean space
- X is now continuous-valued in domain A

- Prior information p,(x) given as a density (absolutely continuous w.r.t.
Lebesgue measure)

e Sensor model motivated by group testing, compressive sensing
- Sensor observes subset of domain A

- If xin A, then observe measurement y distributed as f,(y); else observe y
distributed as fy(y)

- Multiple measurements are conditionally independent given x

e Objective: use controls over multiple time windows to
minimize the differential entropy of for evolution of
information dynamics



Background

Noisy decoding (Horstein ‘63, Burnashev ’'73, ...)
- Probabilistic bisection search
- Decode continuous signal using quantized binary measurements
- No dynamic optimality, no performance guarantees (error bounds)

20 question search...inspired by probabilistic binary search
Jedinak, Frazier, Sznitman et al ‘11, ’13, ...Single sensor

Tsigliradis, Sadler, Hero ‘14, ’15, C.-Ding ‘15, ‘16: Multiple sensors
Dynamic optimality (!!!)

Performance guarantees (some, in a simple case)

Extends to costly sensing (with limited models...)




Formulation

e M sensors searching for a single object located at unknown X

present in compact region A in R"

- Discrete stages: at each stage sensor m chooses A™ a Borel subset of A to
observe, receives discrete-valued observation Y™

oo < (110 X

- Y™, discrete, assumed conditionally independent over sensors, time given
X

e Information history for decisions at stage k:
- Dk = {(Allryll)l Ly (AM]_I yMl)l Ly (Alk-li ylk-l)i e (AMk-lr yMk-l)}

- Information state: probability density p,(X) = p(X|D,) (prior information
p,(X) assumed absolutely continuous with respect to Lebesgue measure)

- Evolution using Bayesian dynamics of inference yields a measure-valued
state process



Formulation - 2

e Admissible strategies:
- Each sensor m: map conditional probability densities on A to actions A™

- Unusual action space...no clear topological structure

— II denotes space of admissible joint strategies for M sensors, over N
stages

e Information Dynamics: Bayes’ rule

(x| Dng1) = prg(z) = pn() E;'Ll,..,,iM:o Hi\il f; (y®)Z[X € ﬂ]szl(Ak?)ik:]
n+ n+ fpn((f) Zgl,...,iM:O H24:1 z'li (y*)Z]o € ﬂé‘il(Ak:)z‘k]da

e Objective: Minimize differential entropy after observations at
stage T

inf H(pry1(x)) = inf E[—/ pr+1(x)log pryq(x)dr]
mell mell €A



Solution

e Stochastic control:
- Notation: A*={A%, ..., AM }; Yk={y, .., yM}

e Bellman’s equation for optimal cost
V(pno TL) — glf (EYn [V(pn—l—17 n + 1) ’Anapn]>

e Verification: A strategy that achieves optimal cost is an
optimal strategy

- Measure valued state process, non-metric action space requires special
considerations



Backward Induction

e One-stage problem

- Leti,,, be a Boolean vector indicating the possible conditions of how X
relates to the set of queries A by the M sensors

- eg.ip=0if Xisnotin AL, i,=1if Xisin A?, ...
- Notation: (A)° = A, (A)* = A. Then, fori,.,,, A, define

PY=ylaX) = > [[AGHTIX enily(ah)?]

Wiy o (A, p) = iy, = / py(0)do >0

mZk\/Izl(Ak*)ik

e Bayes’ rule simplifies:

pn(z) Z;,...,W:o H£421 z-’i (V*)I[X € m]lyzl(Ak)ik]

1 M
Z’il,...,iMZO Wiy Hk:l ilz (yk)

pn—l-l(x) —



Solution - 2

e One-stage problem solution

Expected differential entropy of decisions A (after standard info-theory

manipulations) :

M
By w[Hpn )| A,pn)l = Hiow) = [HO >0 wiy, [T FEGF

i1=0,...,i =0
1

- Z uil:MH(H le (yk))}
1= = k=1

Shannon entropy for discrete variables: Zp ) Inp(y

Dependence on p,(x), A only through scalars {u, 1= (i, .., iy)t=u

Note: term in brackets G(u) is mutual information of the variable X
conditioned on D and y

We want to select A to maximize mutual information between them




Solution -3

e One-stage problem solution (cont)
- Lemma: G(u) is strictly concave in u.
- uis a probability vector (sums to 1, non-negative)
- Maximization is computation of a channel capacity
- u” =arg max G(u), and does not depend on p, (x), A

- Theorem: For any u”, there exists a set of queries by the sensors A* such
that

up :/ pn(o)do

- Proof exploits existence of conditional density...

- Corollary: Optimal cost V(pn,N) = H(py) — G(u™)
- Note that the cost-to-go is again the differential entropy and a constant



Solution - 4

e N-stage problem solution
Lemma: For any density p,(x), we can find A such that

*

Wiy (A pp) =y, forall iy

Theorem: Optimal cost V(Pn,n) = H(pn) — (N +1—n)G(u")

Corollary: the following strategies are optimal:

A, such that w;, ,, (An,pn) =uj,  forall iy

General result for correlated errors among sensors

Computation of u* is still large: 2M variables concave maximization
problems

- Simplify? Exploit conditional independence...



Solution -5

e Single Sensor Problem (Jedinak, Frazier, Sznitman ’13)

- Define for sensor m:

G™(u) =H(uf1"(y) + (1 —u) fo" (y)) — uH(f1"(y)) — (1 —w)H(fo" (y))

u™* = argmax G™ (u)

u

- Scalar strictly concave maximization for each of M sensors

e Multisensor problem

- Theorem: An optimal solution of the multisensor problem at stage n from
state p,(x) is given by

Uz‘le(A*,pn) _ H (um*)z’m(l - um*)l—fim; G(’U,*) _ Z G(um*)

- Complexity M scalar concave maximization problems



Finding the query regions

e Approach: Common approach at coding regions
M

Compute uil:M(A*,pn) — H (um*)zm(l _ um*)l—im

m=1

Order indices i,,,, in a linear, total order

Allocate regions in same order with probabilities satisfying

/ po(z)de = ul,
Az'.

: M

Construct A" as A™ = Ui ylim=1}Air.n

001 A011 AOlO A110 A111 : AlOl AlOO

L_Y I A A U
ettt At
_ [ ) E—



Performance bounds

e Does minimizing entropy guarantee good localization?
- Not necessarily. 2-D differential entropy goes to neg. infinity if error goes
to0in 1 dimension

e Lower bound:
- If H(p,) is finite, then for any optimal strategy, we have

d *
d 002—2”%

2me

E[||X - X,|3] >
- Proof from property that Gaussians have maximal entropy for given error
covariance

e Upper bound: Hard! Will depend on specific coding strategy

- Can show some optimal strategies have finite lower bounds that do not
decayto 0

- One result (Waeber-Frazier ‘15): For binary symmetric channels, one
sensor, there exists a constant c(p) > 1 such that

E[|X — X,[] € o(c(p)™")
- No results for asymmetric channels or non-binary or multi-sensor



Experiments

e |llustration of bounds

- Single sensor, binary symmetric probability of error 0.1

mean square error over time
0.09;

—©—real error curve
'S - B-theoretical upper bound
0.07} B —¢ theoretical lower bound

0.08f *p

0.06}

mean square error




Multisensor example

e Two sensors, binary asymmetric channel
_ 1t . y=1 00 [ 01 [ 1,0 [ I,1 y= 0 1

Probability tables: 0,0 |[0.62 [ 0.17 | 0.17 | 0.04 o |l 0.79 | 0.21

0,1 [[ 021 [ 0.57 | 0.06 | 0.16 111 0.14 | 0.86

1,0 [[0.11 | 0.03 | 0.68 | 0.18 21079 | 0.21

1,1 || 0.11 | 0.02 | 0.16 | 0.71 21 027 ] 073

a) Correlated b) Independent
correlated entropy vs independent entropy correlated error vs independent error
T T 0.18 T T T
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Extensions

e Can allow for choice of sensor mode at a cost
- Changes measurement distribution of the channel

- Objective is to minimize expected reduction in differential entropy minus
the cost of sensing

- Snitzman et al ‘13, C.-Ding ‘16

e But, cannot allow for cost to depend on the choice of A

- Loses property that cost-to-go in dynamic programming is related to
differential entropy

- Optimal strategy unknown, not likely myopic
- Counterexamples available

 No extension to discrete spaces for X
- Cannot find query sets to match operating point u*



Data-driven active sensing

e Previous models require parametric characterizations of
uncertainty

- Are there theories that ‘learn’ the feedback strategies from data rather
than deriving them from models?

e Study new class of problems: Machine learning with sensing
budget

- Collection of features is costly
- Not all features are needed for decisions

- Deciding to measure a feature depends on what information has been
collected to date

- Recent results by Wang, Saligrama, Trapeznikov, C. (‘13-'17)
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Supervised Learning

Training Data

Features: Labels: True
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Adaptive Sensor Selection

e Goal: Learn a policy ¥ to minimize empirical classification error
plus acquisition cost

Current measurements | Classiy using curren

measurements

l—‘—\
N =
?
Policy: 71-(1@ ) )
\_'_l Acquire new

User ’ greasurements, return

to policy




Assumption: Have training data

e Training data with maximal set of features collected
- needed to evaluate what can be gained in performance

Trainiag data
F N N

Fixed a priori
Assume a subset X, X,' Xy! P
of sensors/ X2 X,? Xy 2 . .
. 'S % N, | Define the function
features: X4 Xy Xy -
/;as the classifier
sclkb |- ] -  classif
J X2 X, K2 X2 operating on the
X XK X< sensor subset s,
X, X, X\
. J,\ J,...,\ ~/ Cost of

: sensqgrs in s
The cost of using sensor

subset s for an example x; L(fj (x),y) =1 £y T ; C,

with [abel y, can then be Classification j

defined: error



Learning decision strategies in fixed-
structures

e Assume sequence of potential observations is known

- Decision is whether to collect more observations or make decision with
what is known

- Generalization of Wald’s optimal stopping problem

R(gl 825X J/) = L(fl (x)) lgl(x)<0 + L(fz (x)) lgl(x)ZOIgz(x)<O + L(fe. (x)) lgl(x)zolgz(x)zo
N

Empirical Risk Minimization: min R(gl,gz,xi,yi)

81,82 i=1



Upper bound objectives

e Bound indicators by convex upper bound surrogates ¢(Z) =1__,

R(g1,92,2,y) = L(f1(x)) - Iy (x)<o + L(f2(x))jg1(w)>olg2(w)§0 + L(f3(33>)jg1(x)>0192(x)>0
< L(f1(2)) - ¢(gi(x)) + L(f2(2)) (=91 (x))#(g2(x)) + L(f3(2))d(—g1(2))p(—g2(x))

e Problem: non-convex!

e |dea: reformulate risk before introducing surrogates
- Theorem:

(‘77:2 (x) + ”3 (x)) lgl (x)<0 7'77;1 (x) ) lgl (x)=0 + ‘77;3 ('x) ) 1g2 (x)<0>°

7, (x)-1 +77,(x)1

g1 (x)=0 2,(x)=0

R(g19g29xay)= C+max(

- where 7 (x) = max L(f, (x)) - L(f,(x))
€ = max L(f, ()= 5,09



Now have convex minimization

e Introducing surrogates leads to a linear program!

| (77, (%) +77,(x) ) plg, () ) 77, (%) - (= &, () )+ 7, (%) - Bl g, (x) ),
minmax
s (,(x0) 9= g, (x))+ 7, (%) - g, (x))
- Surrogate ¢(z) = max(1-z, 0)

- Approach generalizes to arbitrary lengths, as long as order is fixed
- Approach can also handle tree structures

e Keyidea: Achieve performance close to that of using all the
features, while reducing cost of measurement significantly

- E.g. risk-based screening at checkpoints to maintain throughput



Budget tree experiment

e Landsat data using 4 spectral bands, each band costs 1
- Compare with competing approach (Dagger)

0.8

= | P Tree
> Dagger

0.7 7

0.6

0.5F

Error

0.4r

0.3r

0.2r

0.1 ! ! ! L 1 1 ! |
0 0.5 1 1.5 2 2.5 3 3.5 4

Avg. Budget



Budget tree experiment 2

* Image segmentation data set: 7 features

LP 0.9
- LP Tree
Greedily o ) Dagger
construct a 2- 0.7} Achieve same - Dagger SC
path tree os- \ performance with ,
« osl <3 feature sets
5 o
W o4
Dagger 03}

0.2

N \
20 1L I
NP2 0010 NP 1PN

0.1+

Avg. Budget



What about sensor selection?

7 4
0,4 ', & [—>{o: ',
.FN .FN r?\
gy(x) ' é Js(X) ' ' Js(X)
Decision function

chooses next sensor or g (x)] é g (x)'

to stop and classify . LJ Y_J
-k Can we efficiently train

decision functions?



Training decision graphs

e Yes! Use backward induction (dynamic programming)
- Train end classifiers first, use those to get surrogate costs-to-go
- Recur towards the front in training
- Theorem: Policy converges to optimal policy as training set grows

Using 3 order polynomial classifiers and decision functions

- - P Tree = o olPTes

— A — A

age Features Used

landsat letter pima
When to do this: small number of sensors, complex functions

When to use LP: simple functions, limited computational resources



Other active sensing problems

Active sensing for Gaussian models

- Deterministic covariance analysis, mostly using myopic heuristics
- Long history (Chernoff, Fedorov, Kushner, Athans, ...)

Active sensing for tracking, classification using approximate
stochastic control

- Combinatorial dynamic decision problem with uncertainty
- Approximations and bounds, but not exact results

Trajectory optimization for active sensing

- Hard! Combines dynamic motion constraints of problems like Traveling
salesperson problems with stochastic sequential decision making

Guaranteed performance suboptimal algorithms
- Exploit structure such as adaptive submodularity, others...

Data-driven approaches for test sequencing

- Generalization bounds, training data with missing features, deep
architectures...




Conclusions

Active sensing problems are increasingly important with the
deployment of flexible, highly capable sensors

- Shared-aperture multifunction RF systems

- Intelligent UAVs

- Adaptive diagnosis systems

When real-time operation is important, need autonomous
decisions rules instead of human-in-the-loop control

Existing theories and results are limited in scope

- Can provide some structure and guidance, but hard to guarantee
performance

Practical solutions will depend on customization of simple
models to specific problem instances
- Much engineering required...




