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NCI’s	checkpoint	of	the	
future?	



Mo1va1on:	Search	

•  Classic	problem		in	WW	II:	submarine	search	
-  Assignment	of	search	patrols	(air,	surface)	to	locate	in	suspected	areas	
-  Key	problem:	not	guaranteed	to	find	when	searching	an	area	

-  Limited	visibility,	range,	intelligent	adversary	
-  Book:	Search	and	Screening	–	B.	Koopman	1946	

	



Mo1va1on:	Surveillance	

•  Unmanned	and	manned	vehicles	in	coordinated	monitoring	
-  Detec<on,	tracking,	classifica<on	of	objects,	ac<vi<es,	…		

	



Mo1va1on:	Diagnosis	

•  Medical	diagnosis,	fault	detec1on	in	components,	…	
-  Key	aspect:	Imperfect	tests		
-  Need	to	interpret	collected	measurements,	iden<fy	what	addi<onal	
informa<on	is	needed	

-  Informa<on	costs	ma\er	

	
Image by J. Wang (2016) 



Mo1va1on:	Security	

•  Checkpoint	of	the	future:	many	possible	tests		
-  Exploit	real-<me	informa<on	for	flexible	rou<ng	through	sta<ons	
-  New	tests	under	development	

	

Checkpoint of the future (IATA 2010) 



Problem	Features	

•  Opportunity	for	selec1ng	measurements	sequen1ally	

•  Informa1on	processed	from	previous	measurements	to	select	
future	measurements	
-  Feedback	

•  Meaningful	mission	objec1ves	to	guide	selec1on	of	
measurements	
-  Correct	diagnosis	
-  Detec<on	
-  Es<ma<on	accuracy	
-  Classifica<on	accuracy	

•  Important	issue	at	the	heart	of	the	problem:	Value	of	
informa1on	

•  So,	what	do	we	know	about	these	problems?	
	

	



Focus	on	3	problems		

• Discrete	search		
-  Finding	object	of	interest	in	extensions	of	classical	search	
theory	models	

• Dynamic	search	with	informa1on	theore1c	objec1ves	
-  New	class	of	search	models	with	full	adap<ve	solu<ons	

•  Adap1ve	test	sequencing	for	detec1on	
-  Learning	adap<ve	decision	rules	from	training	data	
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•  Active Sensing 
-  Focus on changing observations 

•  Implicit Assumption 
-  Rapid, automated processing of 

observations to generate “state” 
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Search	Theory	

•  Simple	model:	Sta1onary	object,	finite	loca1ons,	prior	
probability	of	object	loca1on		(Stone,	Kadane,	…)	

•  Simple	ac1on	model:	look	only	in			
one	place	

•  Simple	sensor	model	
-  Search	of	an	area	yields	detect	or	not	
-  Pd	<	1,	but	no	prob.	false	alarm	
-  Condi<onally	independent	detec<ons;	no	switching	or	travel	costs	

•  Objec1ves	
-  Maximize	probability	of	detec<on/minimize	<me	to	detec<on	
-  Whereabouts	search:	Maximize	probability	of	iden<fying	correct	loca<on	
aeer	fixed	effort	
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Problem	setup		

•  Nota1on	
-  Loca<ons	i	=	1,	…,	N;	object	loca<on	x	ε	{1,	….,	N}		
-  pi	is	probability	of	detec<on	when	searching	loca<on	i	if	object	is	there	
-  Ini<al	probability	distribu<on	πi(0)	=	P(x	=	i)	
-  Decision	u(t)	ε	{1,	….,	N}	à	search	loca<on	i	
-  Informa<on	aeer	measurement	at	t:		I(t)	=	{u(1),	u(2),	…,	u(t)}			(!!!)	

•  Bayesian	informa1on	dynamics	
	
	
	
	
	

P (x|I(t)) ⌘ ⇡i(t) =

(
⇡i(t�1)(1�pi)

1�⇡i(t�1)+⇡i(t�1)(1�pi)
u(t) = i

⇡i(t�1)
1�⇡j(t�1)+⇡j(t�1)(1�pj)

u(t) = j 6= i



No	feedback	needed!	

•  Typical	feedback	structure:	decision	tree	

•  Search	feedback	structure	

-  Future	decisions	needed	only	if	no	detec<on	
-  Solve	as	a	sequence	of	ac<ons,	not	a	feedback	law	
-  Opera<ons	research	vs	stochas<c	control	
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Op1miza1on	Form	

•  Prob.	object	is	at	i	and	is	not	detected	a[er	observa1ons	I(t):	

•  Objec1ve:	minimize	probability	of	no	detec1on	with	searches	
up	to	T:		

	

•  Solu1on:			
-  Feedback	form:	At	<me	t,	search	the	loca<on	with	highest	πi(t-1).	
-  Open-loop:		Sort	
in	decreasing	order	and	select	the	T	largest.		Search	the	loca<ons	in	that	
order.	

⇡i(0)(1� pi)
ni(t) where ni(t) =

tX

k=1

I(u(k) = i)

min
u(1),...,u(T )

NX

i=1

⇡i(0)(1� pi)
ni(T ) such that ni(T ) =

TX

t=1

I(u(t) = i)

{⇡i(0)pi(1� pi)
k, i = 1, . . . , N ; k = 0, . . . , T}
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Extensions	

•  Whereabouts	search	

•  Op1mal	strategy:		
-  Feedback	form:	At	<me	t,	search	the	loca<on	with	second	highest	πi(t-1).	
-  Open-loop	form	available:	search	op<mally	among	all	except	highest	πi(0)	

•  Other	extensions:		mul1ple	sensors,		
sparse	coverage	constraints	
	
	

max

u(1),...,u(T )

(
NX

i=1

⇡i(0)

⇣
1� (1� pi)

ni(T )
⌘
+max

i
⇡i(1� pi)

ni(T )

)



�ͳ

��

�ͳ

��

�ʹ

��Ǧͳ

�ʹ
௠௞ݔ͵� ൒ Ͳ

ଵ௝ݕ א Ͳǡͳ
cost െ݌ଵ௝ǡ ݆ ൐ Ͳ

௞௝ݕ א Ͳǡͳ
cost െ݌௞௝ǡ ݆ ൐ Ͳ

௄௝ݕ א Ͳǡͳ
cost െ݌௄௝ǡ ݆ ൐ Ͳ

Agents

Locations

ܰͳ

ܰʹ

ܰ�

Sparse accessibility

Extensions	

•  Convert	to	network	op1miza1on	
-  Integer	program	with	unimodular	constraints	
-  Fast	algorithm	developed	Ding-C.	’17		--	complexity		

O(N |A|) where N =
MX

m=1

Nm



Results	

•  Sample	search:	9	UAVs	with	limited	field	of	regard	
-  Pds	from	0.7	to	0.9	

Illustra<on	of	coverage	and		
points	of	interest	

6204 8240 10414 12917 15515 18350 21265
|A|

0

5

10

15

20

25

Ti
m

e
el

ap
se

d
(s

ec
)

New algorithm
Capacity scaling Run-<me	vs	

commercial		
alterna<ve	with	
Increasing		
density	

Run-<me	vs	
commercial		
alterna<ve	with	
Increasing		
supply	



Can	we	improve	sensor	model?	

•  Assume	we	have	both	false	alarms	and	missed	detec1ons	
-  Observa<on	y	in	{0,1}	
-  P(y	=	1	|	object	present)	=	pi,	P(y	=	1|object	absent)	=	qi	
-  Ac<on	u(t)	yields	measurement	y(t)	
-  Informa<on	aeer	measurement	at	t:		I(t)	=	{u(1),y(1),	…,	u(t),	y(t)}		

•  Bayesian	dynamics	
	
	
	
	

P (x = i|I(t)) ⌘ ⇡i(t) =

8
>>>><

>>>>:

⇡i(t�1)pi

(1�⇡i(t�1))qi+⇡i(t�1)pi
u(t) = i, y(t) = 1

⇡i(t�1)(1�pi)
(1�⇡i(t�1))(1�qi)+⇡i(t�1)(1�pi)

u(t) = i, y(t) = 0
⇡i(t�1)qj

(1�⇡j(t�1))qj+⇡j(t�1)pj
u(t) = j 6= i, y(t) = 1

⇡i(t�1)(1�qj)
(1�⇡j(t�1))(1�qj)+⇡j(t�1)(1�pj)

u(t) = j 6= i, y(t) = 0



…with	great	difficulty!	

•  Objec1ve:	Given	T	observa1ons,		

•  Only	one	known	characteriza1on	of	op1mal	strategies	(C.‘95)	
-  Special	case:		pi	=	1-	qi	=	p	
-  Op<mal	feedback	strategy:	at	<me	t,	measure	the	loca<on	with	either	the	
largest	or	second	largest	πi(t-1)	

-  Myopic	strategies	op<mal	for	dynamic	model	

•  Results	do	not	extend	to	mul1ple	searchers,	non-symmetric	
error	probabili1es,	…	
-  Must	resort	to	stochas<c	control	approaches		
-  Stochas<c	dynamic	programming	for	par<ally	observed	process		

-  C.’97,	Evans	and	Krishnamurthy	’01,	Wintenby	and	Krishnamurthy’06,	
Kreucher	et	al	’06:	Bashan	et	al’08,	C.’05,	C.-Hitchings	‘10,	‘11…	

-  Or	alterna<ve	formula<ons	–	informa<on	theory,	e.g.		

max

�1,...,�T

n

max

i
⇡i(T )

o

such that �t(I(t� 1)) = u(t)



Informa1on	Theory	and	Search	

•  Informa1on	theory:	quan1ta1ve	measures	of	informa1on	and	
uncertainty	
-  Given	condi<onal	distribu<on	πi(t-1),	can	measure	entropy	

-  Heuris<c	strategy	for	ac<ve	sensing:	Select	loca<on	to	search	that	
maximizes	expected	reduc<on	in	entropy	(Kastella	‘95,	many	others)	

-  Equivalent	to	maximizing	expected	KL	divergence	between	π(t-1),	π(t)	
-  Computable	for	simple	problems	(e.g.	search,	not	too	many	loca<ons),	
but	no	guarantee	of	dynamic	op<mality	(myopic,	one-stage	lookahead)	

-  And	weak	correla<on	with	mission	metrics	(entropy	vs	loca<on)	

	

u(t) = arg min
i=1,...,n

�
J(⇡(t� 1))� Ey(t)J(⇡(t)|u(t) = i, y(t))

�

J(⇡(t� 1)) =

NX

i=1

�⇡i(t� 1) log(⇡i(t� 1))



Change	search	problem	

•  Object	located	in	compact	subset	of	Euclidean	space	
-  x	is	now	con<nuous-valued	in	domain	A	
-  Prior	informa<on	p0(x)	given	as	a	density	(absolutely	con<nuous	w.r.t.	
Lebesgue	measure)	

•  Sensor	model	mo1vated	by	group	tes1ng,	compressive	sensing	
-  Sensor	observes	subset	of	domain	A	
-  If	x	in	A,	then	observe	measurement	y	distributed	as	f1(y);	else	observe	y	
distributed	as	f0(y)	

-  Mul<ple	measurements	are	condi<onally	independent	given	x	

•  Objec1ve:	use	controls	over	mul1ple	1me	windows	to	
minimize	the	differen1al	entropy	of	for	evolu1on	of	
informa1on	dynamics	

	



Background	

•  Noisy	decoding	(Horstein	‘63,	Burnashev	’73,	…)	
-  Probabilis<c	bisec<on	search		
-  Decode	con<nuous	signal	using	quan<zed	binary	measurements	
-  No	dynamic	op<mality,	no	performance	guarantees	(error	bounds)	

•  20	ques1on	search…inspired	by	probabilis1c	binary	search	
-  Jedinak,	Frazier,	Sznitman	et	al		‘11,	’13,	…Single	sensor		
-  Tsigliradis,	Sadler,	Hero	‘14,	’15,	C.-Ding	‘15,	‘16:	Mul<ple	sensors	
-  Dynamic	op<mality	(!!!)	
-  Performance	guarantees	(some,	in	a	simple	case)	
-  Extends	to	costly	sensing	(with	limited	models…)	
	



Formula1on	

•  M	sensors	searching	for	a	single	object	located	at	unknown	X	
present	in	compact	region	A	in	Rn	

-  Discrete	stages:	at	each	stage	sensor	m	chooses	Am	a	Borel	subset	of	A	to	
observe,	receives	discrete-valued	observa<on	Ym	

-  Ymk	discrete,	assumed	condi<onally	independent	over	sensors,	<me	given	
X	

•  Informa1on	history	for	decisions	at	stage	k:	
-  Dk	=	{(A1

1,y11),	…,	(AM
1,	yM1),	…,	(A1

k-1,	y1k-1),	…,	(AM
k-1,	yMk-1)}	

-  Informa<on	state:		probability	density	pn(X)	=	p(X|Dk)		(prior	informa<on	
p1(X)	assumed	absolutely	con<nuous	with	respect	to	Lebesgue	measure)	

-  Evolu<on	using	Bayesian	dynamics	of	inference	yields	a	measure-valued	
state	process		

	

P (Y m = y|Am, X) =

(
fm
1 (y) X 2 Am

fm
0 (y) X /2 Am



Formula1on	-	2	

•  Admissible	strategies:	
-  Each	sensor	m:	map	condi<onal	probability	densi<es	on	A	to	ac<ons	Am	
-  Unusual	ac<on	space…no	clear	topological	structure	
- Π	denotes	space	of	admissible	joint	strategies	for	M	sensors,	over	N	
stages	

•  Informa1on	Dynamics:	Bayes’	rule	

•  Objec1ve:		Minimize	differen1al	entropy	a[er	observa1ons	at	
stage	T	

	

p(x|Dn+1) ⌘ pn+1(x) =
pn(x)

P1
i1,...,iM=0

QM
k=1 f

k
ik(y

k)I[X 2 \M
k=1(A

k)ik ]
R
pn(�)

P1
i1,...,iM=0

QM
k=1 f

k
ik
(yk)I[� 2 \M

k=1(A
k)ik ]d�

inf

⇡2⇧
H(p

T+1(x)) ⌘ inf

⇡2⇧
E[�

Z

x2A

p
T+1(x) log pT+1(x)dx]



Solu1on		

•  Stochas1c	control:	
-  Nota<on:		Ak	=	{A1

k,	…,	AM
k}	;	Yk	=	{y1k,	…,	yMk}		

•  Bellman’s	equa1on	for	op1mal	cost	

	

•  Verifica1on:	A	strategy	that	achieves	op1mal	cost	is	an	
op1mal	strategy	
-  Measure	valued	state	process,	non-metric	ac<on	space	requires	special	
considera<ons	

	

V (pn, n) = inf
An

⇣
EYn [V (pn+1, n+ 1)|An, pn]

⌘



Backward	Induc1on		

•  One-stage	problem	
-  Let	i1:M	be	a	Boolean	vector	indica<ng	the	possible	condi<ons	of	how	X	
relates	to	the	set	of	queries	A	by	the	M	sensors		
-  e.g.	i1	=	0	if	X	is	not	in	A1,	i2	=	1	if	X	is	in	A2,	…	

-  Nota<on:	(A)0	=	Ac,	(A)1	=	A.		Then,	for	i1:M	,	A,	define	

•  Bayes’	rule	simplifies:	

	

P (Y = y|A, X) =
1X

i1,...,iM=0

MY

k=1

fk
ik(y

k)I[X 2 \M
k=1(A

k)ik ]

ui1:M (A, pN ) ⌘ ui1:M =

Z

\M
k=1(A

k⇤)ik
pN (�)d� � 0

pn+1(x) =
pn(x)

P1
i1,...,iM=0

QM
k=1 f

k
ik(y

k)I[X 2 \M
k=1(A

k)ik ]
P1

i1,...,iM=0 ui1:M

QM
k=1 f

k
ik
(yk)



Solu1on	-	2	

•  One-stage	problem	solu1on	
-  Expected	differen<al	entropy	of	decisions	A	(aeer	standard	info-theory	
manipula<ons)	

-  Shannon	entropy	for	discrete	variables:		

-  Dependence	on	pN(x),	A	only	through	scalars	{uI,	I	=	(i1,	…,	iM)}	=	u	
-  Note:	term	in	brackets	G(u)	is	mutual	informa<on	of	the	variable	X	
condi<oned	on	DN	and	y	

-  We	want	to	select		A	to	maximize	mutual	informa<on	between	them	

	

EY N [H(pN+1)|A, pN )] = H(pN )�
h
H(

1X

i1=0,...,iM=0

ui1:M

MY

k=1

fk
ik(y

k))

�
1X

i1=0,...,iM=0

ui1:MH(
MY

k=1

fk
ik(y

k))
i

H(f(y)) = �
X

y

p(y) ln p(y)



Solu1on	-	3	

•  One-stage	problem	solu1on	(cont)	
-  Lemma:		G(u)	is	strictly	concave	in	u.		 
-  u	is	a	probability	vector	(sums	to	1,	non-nega<ve)	
-  Maximiza<on	is	computa<on	of	a	channel	capacity	
-  u*		=	arg	max	G(u),	and	does	not	depend	on	pn(x),	A	

-  Theorem:		For	any	u*,,	there	exists	a	set	of	queries	by	the	sensors	A*	such	
that		

-  Proof	exploits	existence	of	condi<onal	density…	

-  Corollary: Optimal cost 
-  Note that the cost-to-go is again the differential entropy and a constant  

	

u⇤
i1:M =

Z

\M
k=1(A

k⇤)ik
pN (�)d�

V (pN , N) = H(pN )�G(u⇤)



Solu1on	-	4	

•  N-stage	problem	solu1on		
-  Lemma:		For	any	density	pn(x),	we	can	find	A	such	that		
	
		

-  Theorem:		Op<mal	cost		
	
-  Corollary:	the	following	strategies	are	op<mal:			

	
-  General	result	for	correlated	errors	among	sensors	
-  Computa<on	of	u*	is	s<ll	large:	2M	variables	concave	maximiza<on	
problems		
-  Simplify?	Exploit	condi<onal	independence…	

	

ui1:M (A, pn) = u⇤
i1:M for all i1:M

V (pn, n) = H(pn)� (N + 1� n)G(u⇤)

An such that ui1:M (An, pn) = u⇤
i1:M for all i1:M



Solu1on	-	5	

•  Single	Sensor	Problem	(Jedinak,	Frazier,	Sznitman	’13)	
-  Define	for	sensor	m:		

-  Scalar	strictly	concave	maximiza<on	for	each	of	M	sensors	

•  Mul1sensor	problem	
-  Theorem:	An	op<mal	solu<on	of	the	mul<sensor	problem	at	stage	n		from	
state	pn(x)			is	given	by	

-  Complexity M scalar concave maximization problems 

	

Gm
(u) =H(ufm

1 (y) + (1� u)fm
0 (y))� uH(fm

1 (y))� (1� u)H(fm
0 (y))

um⇤
= argmax

u
Gm

(u)

ui1:M (A⇤, pn) =
MY

m=1

(um⇤)im(1� um⇤)1�im ; G(u⇤) =
MX

m=1

G(um⇤)



•  Approach:	Common	approach	at	coding	regions	

-  Compute	

-  Order	indices	i1:M	in	a	linear,	total	order	
-  Allocate	regions	in	same	order	with	probabili<es	sa<sfying		

-  Construct	Am	as	

	

 

Finding	the	query	regions	

ui1:M (A⇤, pn) =
MY

m=1

(um⇤)im(1� um⇤)1�im

Z

Aii:M

pn(x)dx = u

⇤
i1:M

Am = [{i1:M |im=1}Ai1:M



•  Does	minimizing	entropy	guarantee	good	localiza1on?	
-  Not	necessarily.		2-D	differen<al	entropy	goes	to	neg.	infinity	if	error	goes	
to	0	in	1	dimension	

•  Lower	bound:	
-  If	H(p0)	is	finite,	then	for	any	op<mal	strategy,	we	have		

-  Proof	from	property	that	Gaussians	have	maximal	entropy	for	given	error	
covariance	

•  Upper	bound:	Hard!		Will	depend	on	specific	coding	strategy	
-  Can	show	some	op<mal	strategies	have	finite	lower	bounds	that	do	not	
decay	to	0	

-  One	result	(Waeber-Frazier	‘15):		For	binary	symmetric	channels,	one	
sensor,	there	exists	a	constant	c(p)	>	1	such	that		

-  No	results	for	asymmetric	channels	or	non-binary	or	mul<-sensor	

	

 

Performance	bounds	

E[||X � X̂n||22] �
d d
p
C0

2⇡e
2�

2n'⇤
d

E[|X � X̂n|] 2 o(c(p)�n)



Experiments	

•  Illustra1on	of	bounds	
-  Single	sensor,	binary	symmetric	probability	of	error	0.1	
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Mul1sensor	example	

•  Two	sensors,	binary	asymmetric	channel	
-  Probability	tables:	
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b). Note that, in the correlated error model, the sensors
have greater probability of agreeing on a measurement,
which corresponds to a significant part of the error being
created by randomness in the signature of the object of
interest.

TABLE I: The sensor specifications for two types of
Boolean sensors: correlated and independent errors

y = 0,0 0,1 1,0 1,1
0, 0 0.62 0.17 0.17 0.04
0, 1 0.21 0.57 0.06 0.16
1,0 0.11 0.03 0.68 0.18
1,1 0.11 0.02 0.16 0.71

a) Correlated

y= 0 1

f1
0 0.79 0.21
f1
1 0.14 0.86
f2
0 0.79 0.21
f2
1 0.27 0.73

b) Independent

For these problems, computation of a greedy solution
to minimize expected mean square error at each stage
is a formidable task, as it requires searching over all
possible combinations of sensing regions for each sensor.
With the posterior differential entropy objective, we have
optimal strategies characterized in terms of computed
operating points. For the independent case, the optimal
operating points computed using the MATLAB func-
tion fmincon are u1⇤

= 0.511, u2⇤
= 0.494. Sensor

1 is more accurate, and thus seeks to include more
probability in its search area. The expected one-stage
reduction in differential entropy for this case is 0.54

bits. For the correlated case, the joint operating point is
u11⇤

= 0.288, u10⇤
= 0.25, u01⇤

= 0.25, u00⇤
= 0.212,

with expected differential entropy reduction of 0.58 bits
per stage. The correlated channel case leads to greater
reduction in differential entropy, as the sensors exploit
the correlation in the signal to enhance information
extraction. When compared with the optimal strategies
for independent sensors, the correlated sensors increase
the probability of the overlap area (u11⇤ vs. u1⇤ ⇥ u2⇤)
where both sensors query as to the presence of the object.

The optimal strategies at each stage n, based on
pn�1(x), are to find regions A1

n, A2
n ⇢ [0, 1]

2 so that
Z

x2A

1
n\A

2
n

p
n�1(x)dx = u11⇤

Z

x2(A1
n)c\A

2
n

p
n�1(x)dx = u01⇤

Z

x2A

1
n\(A2

n)c
p
n�1(x)dx = u10⇤

Z

x2(A1
n)c\(A2

n)c
p
n�1(x)dx = u00⇤

Note that there are many sensing strategies that will
satisfy the above equalities. We exploit this degree of
freedom to select sensing strategies that can be imple-
mented by sensors with field of view constraints, and that
aim to reduce mean square error as well as achieving op-
timal reduction in differential entropy. Thus, we choose

our subsets to be rectangular intervals, so that sensors
will observe connected regions. In addition, we choose
our sensing strategies to alternate between partitions of
the x-axis at odd times n, and partitions of the y-axis
at even times n, dividing each axis into intervals with
probabilities corresponding to u10⇤, u11⇤, u01⇤, u00⇤, and
then we aggregate the appropriate regions to compute the
sensing areas A1

n, A2
n. This construction is illustrated in

Fig. 3. By alternating between axes for partition at differ-
ent times, we ensure that the errors in both dimensions
are reduced as the differential entropy decreases.
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Fig. 3: Partition of a line segment into four disjoint
subsets at each stage.

For each of the sensor models, we conducted 2000
Monte Carlo experiments. In each experiment, we ran-
domly generate a object position X 2 X = [0, 1]

2 using
a uniform distribution. We initialize our prior density for
X , p0(x), as a uniform distribution; therefore, the initial
differential entropy H(p0) = � R 1

0

R 1
0 log2 1dx dy = 0.

At each stage n > 0, given the density pn�1(x), sensing
areas A1

n, A2
n are selected, and random measurements

(y1
n, y2

n) are generated according to the sensor error
models. These measurements are used to update the
conditional density from pn�1(x) to pn(x) as indicated
in (2). We continue this process until n = 20 sensing
stages are completed.

For each experiment, we plot the average differential
entropy H(pn) and the average mean-square error as a
function of n. Fig. 4(a) contains the average differential
entropy results for both the correlated and independent
measurement error models. As expected, the average
differential entropy for the correlated case decays faster
than that for the independent case as the number of
stages increases. Fig. 4(b) contains the graph of the
mean squared error of the estimated object location as a
function of the number of stages, as well as the lower
bounds on the errors. We note the near-equivalence of the
the mean square error in both cases, leading to an expo-
nential decay as a function of the number of stages. This
suggests that an exponentially decaying upper bound
may be possible for these algorithms, although no such
bound has been established in the literature.

The second set of experiments consist of 3 sensors
searching for a object in X = [0, 1]. Each sensor has
observations taking 3 possible values. The sensing areas
at stage n are denoted as A1

n, A2
n and A3

n respectively.
We assume that sensor 3 has two choices of precision
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•  Can	allow	for	choice	of	sensor	mode	at	a	cost		
-  Changes	measurement	distribu<on	of	the	channel	
-  Objec<ve	is	to	minimize	expected	reduc<on	in	differen<al	entropy	minus	
the	cost	of	sensing			

-  Snitzman	et	al	‘13,	C.-Ding	‘16	

•  But,	cannot	allow	for	cost	to	depend	on	the	choice	of	A	
-  Loses	property	that	cost-to-go	in	dynamic	programming	is	related	to	
differen<al	entropy	

-  Op<mal	strategy	unknown,	not	likely	myopic		
-  Counterexamples	available	

•  No	extension	to	discrete	spaces	for	X	
-  Cannot	find	query	sets	to	match	opera<ng	point	u*	
 

Extensions	



•  Previous	models	require	parametric	characteriza1ons	of	
uncertainty		
-  Are	there	theories	that	`learn’	the	feedback	strategies	from	data	rather	
than	deriving	them	from	models?	

•  Study	new	class	of	problems:	Machine	learning	with	sensing	
budget	
-  Collec<on	of	features	is	costly	
-  Not	all	features	are	needed	for	decisions	
-  Deciding	to	measure	a	feature	depends	on	what	informa<on	has	been	
collected	to	date	

-  Recent	results	by	Wang,	Saligrama,	Trapeznikov,	C.	(‘13-’17)	

Data-driven	ac1ve	sensing	



Mo1va1ng	Example	

•  Digit	recogni1on:	Do	we	need	full	resolu1on?	

Need 
higher 

resolution 



Supervised	Learning	

L(   ,   )= 

Features: 
X 

Labels: 
Y 

Training Data 

Loss: 

Predicted 
Label 

True 
Label 

Learn a Classifier: f(   )à 



Adap1ve	Sensor	Selec1on	
 

•  Goal:	Learn	a	policy	π	to	minimize	empirical	classifica1on	error	
plus	acquisi1on	cost	

Policy: 

User 

Current measurements 

π(   ,   ) 

fs(    )à 

π(   ,   ) 

π(   ,   ) 

Classify using current 
measurements 

Acquire new 
measurements, return 

to policy 



Assump1on:	Have	training	data	

•  Training	data	with	maximal	set	of	features	collected		
-  needed	to	evaluate	what	can	be	gained	in	performance	

Define the function 
fj as the classifier 
operating on the 
sensor subset sj 
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x1
3 

… 
x1

K-2 

x1
K-1 

x1
K 

x2
1 

x2
2 

x2
3 

… 
x2

K-2 

x2
K-1 

x2
K , ,…, 

xN
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xN
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xN
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Training data 

{ }Ks j ,,1…⊆

Assume a subset 
of sensors/

features: 

The cost of using sensor 
subset s for an example xi 
with label yi can then be 

defined: 

∑
∈

≠ +=
j

j
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Classification 
error 

Cost of 
sensors in s 

Fixed a priori 



Learning	decision	strategies	in	fixed-	
structures	

•  Assume	sequence	of	poten1al	observa1ons	is	known	
-  Decision	is	whether	to	collect	more	observa<ons	or	make	decision	with	
what	is	known	

-  Generaliza<on	of	Wald’s	op<mal	stopping	problem	

( ) ( ) ( ) ( ) 0)(0)(30)(0)(20)(121 21211
11)(11)(1)(,,, ≥≥<≥< ⋅+⋅+⋅= xgxgxgxgxg xfLxfLxfLyxggR

Empirical	Risk	Minimiza<on:	 ( )∑
=

N

i
iigg
yxggR

1
21,
,,,min

21



Upper	bound	objec1ves	

•  Bound	indicators	by	convex	upper	bound	surrogates	

•  Problem:	non-convex!	

•  Idea:	reformulate	risk	before	introducing	surrogates	
-  Theorem:		

-  where			

( ) 01 ≤≥ zzφ

R(g1, g2, x, y) = L(f1(x)) · I
gi(x)0 + L(f2(x))I

g1(x)>0Ig2(x)0 + L(f3(x))I
g1(x)>0Ig2(x)>0

 L(f1(x)) · �(gi(x)) + L(f2(x))�(�g1(x))�(g2(x)) + L(f3(x))�(�g1(x))�(�g2(x))
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Now	have	convex		minimiza1on	

•  Introducing	surrogates	leads	to	a	linear	program!	

-  Surrogate	φ(z)	=	max(1-z,	0)	
-  Approach	generalizes	to	arbitrary	lengths,	as	long	as	order	is	fixed	
-  Approach	can	also	handle	tree	structures	

•  Key	idea:		Achieve	performance	close	to	that	of	using	all	the	
features,	while	reducing	cost	of	measurement	significantly	
-  E.g.	risk-based	screening	at	checkpoints	to	maintain	throughput	

( ) ( ) ( ) ( )
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Budget	tree	experiment	

•  Landsat	data	using	4	spectral	bands,	each	band	costs	1	
-  Compare	with	compe<ng	approach	(Dagger)	



Budget	tree	experiment	2	

•  Image	segmenta1on	data	set:		7	features	



What	about	sensor	selec1on?	

g1(x) g3(x) g6(x) 

g2(x) 

g4(x) 

g5(x) 

g7(x) 

Consider a directed 
acyclic graph 
(not a tree!) 

Decision function 
chooses next sensor or 

to stop and classify 
Can we efficiently train 

decision functions? 



Training	decision	graphs 		

•  Yes!		Use	backward	induc1on	(dynamic	programming)	
-  Train	end	classifiers	first,	use	those	to	get	surrogate	costs-to-go	
-  Recur	towards	the	front	in	training	
-  Theorem:	Policy	converges	to	op<mal	policy	as	training	set	grows	



Other	ac1ve	sensing	problems	

•  Ac1ve	sensing	for	Gaussian	models	
-  Determinis<c	covariance	analysis,	mostly	using	myopic	heuris<cs	
-  Long	history	(Chernoff,	Fedorov,	Kushner,	Athans,	…)	

•  Ac1ve	sensing	for	tracking,	classifica1on	using	approximate	
stochas1c	control	
-  Combinatorial	dynamic	decision	problem	with	uncertainty	
-  Approxima<ons	and	bounds,	but	not	exact	results	

•  Trajectory	op1miza1on	for	ac1ve	sensing	
-  Hard!		Combines	dynamic	mo<on	constraints	of	problems	like	Traveling	
salesperson	problems	with	stochas<c	sequen<al	decision	making	

•  Guaranteed	performance	subop1mal	algorithms	
-  Exploit	structure	such	as	adap<ve	submodularity,	others…	

•  Data-driven	approaches	for	test	sequencing	
-  Generaliza<on	bounds,	training	data	with	missing	features,	deep	
architectures…	



Conclusions	

•  Ac1ve	sensing	problems	are	increasingly	important	with	the	
deployment	of	flexible,	highly	capable	sensors	
-  Shared-aperture	mul<func<on	RF	systems	
-  Intelligent	UAVs	
-  Adap<ve	diagnosis	systems	

•  When	real-1me	opera1on	is	important,	need	autonomous	
decisions	rules	instead	of	human-in-the-loop	control		

•  Exis1ng	theories	and	results	are	limited	in	scope	
-  Can	provide	some	structure	and	guidance,	but	hard	to	guarantee	
performance	

•  Prac1cal	solu1ons	will	depend	on	customiza1on	of	simple	
models	to	specific	problem	instances	
-  Much	engineering	required…	


