System-Independent Dual-Energy Computed Tomography for Characterization of Materials

CASIS 2016 at Lawrence Livermore National Laboratory
May 18, 2016

Lawrence Livermore National Laboratory, P.O. Box 808 L-154, Livermore, CA 94551; seetho3@llnl.gov
Summary

- Context: DHS needs to detect explosives in baggage
- Objective: Develop system-independent X-ray signatures
 - Commonly used dual-energy (DECT) X-ray signatures, based on \((\mu_{\text{high}}, \mu_{\text{low}})\) or Hounsfield units, are system X-ray spectrum dependent; this makes them difficult to compare across systems

- Recent Results:
 - DHS-EXD funded development of a new method called SIRZ* using a physics-based feature space \((\rho_e, Z_e)\)
 - In test cases SIRZ was precise (<2% err.) and accurate (<3% err.) for 5 different CT spectra taken in pairwise combinations
 - SIRZ has now been automated and its accuracy confirmed to <3% error on another scanner

- Advantages:
 - SIRZ removes spectral information from the characterization feature space.

SIRZ usefulness still needs to verified for other systems, such as EDSs
Outline

- SIRZ Method
- Experiments
- Results
 - Manual & semi-automated SIRZ R&D tests
 - Automated-SIRZ tests
- Future Work
- Summary
SIRZ is a reference-calibrated dual energy decomp post-processing

\[\rho_e = K(a_c) \] and \[Z_e = k(a_p/a_c)^{1/n} \]

where the \(K, k \) and \(n \) constants are obtained through a calibration procedure using well-known reference materials

Photoelectric-Compton decomp* (PCD) solves a system of equations

- Attenuation generally follows the Beer-Lambert Law:
 \[I = I_0 e^{-\mu l} \]

- Attenuation Projections (P) are obtained using the formula:
 \[P = -\ln \frac{I}{I_0} = \mu l \]

- Photoelectric and Compton contributions \((A_c, A_p)\) of \((\mu l)\) are a function of:
 \[P(E) = \int \mu(x, y, z, E) dl = f_{KN}(E) \int a_c dl + f_p(E) \int a_p dl = f_{KN}(E)A_c + f_p(E)A_p \]

- Integrating over the system spectral response \([S(E)]\) extends mono- to poly-energetic, then use 2 (low/high) spectra to solve a system of 2 equations with 2 unknowns \((A_c, A_p)\).
 \[P_L = -\ln \left[\int S_L(E) \exp\left[-f_{KN}(E)A_c - f_p(E)A_p\right] dE \right] + \ln \int S_L(E) dE \quad \text{(Low energy projection)} \]
 \[P_H = -\ln \left[\int S_H(E) \exp\left[-f_{KN}(E)A_c - f_p(E)A_p\right] dE \right] + \ln \int S_H(E) dE \quad \text{(High energy projection)} \]

Note: Spectral knowledge of \(S_L(E)\) and \(S_H(E)\) are needed
Ze and ρ_e are system-independent decomposition features

- **Ze** is an alternative definition of effective atomic number*, instead of Z_{eff}
 - $Z_{\text{eff}} = \sqrt[p]{\sum_i a_i(Z_i)^p}$ is empirically derived approximation, fits poorly over broad Z/spectrum
 - Ze is based on X-ray cross sections, and is computed using published tables
 - ZeCalc‡ is a Java app to calculate Ze given composition and spectrum (and ρ_e if density known)

- ρ_e is the electron density, given as:
 $$\rho_e = \rho \frac{\sum r_iZ_i}{\sum r_jA_j},$$
 where ρ is mass density, r_i is molar fraction, and A_i is atomic mass

- Materials with identical Ze are shown to have closer X-ray cross section than materials with identical Z_{eff} (with $p=3.80$).
- SIRZ tested for $6 \leq Ze \leq 14$ and $0.5 \leq \rho_e \leq 1.2$

We chose features grounded in x-ray physics to remove system variability.
(\rho_e, Z_e) values are found by MMSE fit to known reference materials

- SIRZ uses \(\rho_e = K(a_c) \) and \(Z_e = k(a_p/a_c)^{1/n} \)
- For each dual-energy scan, constants \(K, k \) and \(n \) are found by minimum-mean-square-error (MMSE) fit from the \(a_c \) and \(a_p \) images of reference materials whose \((\rho_e, Z_e)\) values are well known
 - We used Graphite, POM (Delrin), Water, PTFE (Teflon), Magnesium, Silicon
- The \((\rho_e, Z_e)\) of the unknown specimen is directly calculated using the equations above
- Note that beam hardening compensation is not needed!
R&D experiments involved two CT systems of similar design

- Two DECT systems (HE and TB) were used for quantitative specimen characterization
 - The main differences is in their detectors and energies employed
- Reference Materials were *simultaneously* scanned with specimen

![General layout of HE and TB DECT systems](image)

<table>
<thead>
<tr>
<th>CT Scanners, Spectra and Filters Used in Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT Scanner</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TB</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Spectral responses used in experiments

The shaded boxes indicate the scans that were not acquired.
Well-known specimens were designed to establish a baseline of performance

- Specimens covered a range of Z values (from graphite, Z=6, to Si, Z=14)
 - Homogeneous Specimens match the composition of corresponding reference materials
 - Two Heterogeneous “composite” Specimens examine system behavior for complex samples
 - High-Z Specimen of RbBr solution to observe behaviors outside of design goals
- All solid references and specimens were assayed to >99.98% purity by composition

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
<th>Dia (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen 1</td>
<td>Graphite</td>
<td>50.8</td>
</tr>
<tr>
<td>Specimen 2</td>
<td>Teflon</td>
<td>56</td>
</tr>
<tr>
<td>Specimen 3</td>
<td>Magnesium</td>
<td>25.4</td>
</tr>
<tr>
<td>Specimen 4</td>
<td>Silicon</td>
<td>25.4</td>
</tr>
<tr>
<td>Insert A</td>
<td>Teflon</td>
<td>10</td>
</tr>
<tr>
<td>Insert B</td>
<td>Delrin</td>
<td>10</td>
</tr>
<tr>
<td>Insert C</td>
<td>Magnesium</td>
<td>10</td>
</tr>
<tr>
<td>Insert D</td>
<td>Water</td>
<td>10</td>
</tr>
<tr>
<td>Substrate 1</td>
<td>Teflon Plug</td>
<td>56</td>
</tr>
<tr>
<td>Substrate 2</td>
<td>Delrin Plug</td>
<td>50.8</td>
</tr>
<tr>
<td>Specimen 7</td>
<td>Water² (60 ml)</td>
<td>36.9/38.9</td>
</tr>
<tr>
<td>High-Z Specimen</td>
<td>19% RbBr solution</td>
<td>10</td>
</tr>
</tbody>
</table>
Features based on linear attenuation coefficients discriminated poorly

- Z_{eff} interpolation uses reference materials to generate Z_{eff} estimates based on Low/High ratio values.
- Z_{eff} interpolation significantly improves errors in the vertical dimension.
- \(YNC^*\) using PCD-estimates of Z_{eff} is slightly better, but still has large horizontal errors.

The vertical (Z) uncertainty is reduced from Ratio to Interpolated-Z_{eff} results.
In our R&D, SIRZ* showed better precision and accuracy over prior methods. SIRZ is system-independent and outperforms Ratio, Z_{eff}-interpolation.

- System-independent ρ_e/Z_e (SIRZ) produces good material estimates over the interpolative range.
- Using six reference materials generates similar results to using only the four shown.
- “Actual” values on the SIRZ plot were estimated with ZeCalc.

SIRZ

Reference Materials used for spectral-coefficient determination are in Red Boxes.
SIRZ has been automated* and tested on a different DECT scanner. SIRZ was validated and shown to have <3% accuracy error on a new DECT scanner.

Future work

- Currently estimating spectral response of a TSA-certified explosives detection system (EDS): the Leidos(Reveal) CT80-DR
 - Using HADES, MCNP and BRL-CAD to model the spectral response of the CT80-DR and simulate material rods scanned on the CT80-DR
 - Reference rods scanned on the system match HADES-simulated attenuation values to within 5% (low energy) and 15% (high energy).
 - Iterating on the current system model to bring this closer (target of <5%).
 - HADES models of MicroCT provide estimates matching to within 6%

- Next step: Run dual energy decomposition for CT80-DR datasets, to compare with prior MicroCT results.
Open questions and future work for decomposition methods

- What is the minimum set of reference materials required? (Theoretically 2)
 - We used four to six reference materials in the ranges of \(6 \leq Z_e \leq 14\) and \(0.5 \leq \rho_e \leq 1.2\) and we kept \(\mu l \leq 2\) where \(l\) is the max chord length

- How will performance degrade for materials outside the \((\rho_e, Z_e)\) range of the reference materials? At what point will it exceed 3% error?

- What is the maximum \(Z\) supported by this feature space? (Initial investigation was performed for \(Z\) up to 20, but K-edges are an issue at higher \(Z\))

- How often does the system spectral response estimation need to be recalculated? (Due to spectrum changes or model uncertainties or noise)

- How well will these methods apply to other DECT scanners?
 - Laboratory DECT systems?
 - Other commercial explosive detection systems (EDSs), e.g., CT80-DR?
 - Other energies and applications (medical, cargo, nano-CT, etc.)?
 - Horizontally-oriented X-ray sources?

No matter the method used, these issues need to be addressed.
Summary

- Context: DHS needs to detect explosives in baggage
- Objective: Develop system-independent X-ray signatures
 - Commonly used dual-energy (DECT) X-ray signatures, based on (μ_{high}, μ_{low}) or Hounsfield units, are system X-ray spectrum dependent; this makes them difficult to compare across systems
- Recent Results:
 - DHS-EXD funded development of a new method called SIRZ* using a physics-based feature space (ρ_e, Z_e)
 - In test cases SIRZ was precise (<2% err.) and accurate (<3% err.) for 5 different CT spectra taken in pairwise combinations
 - SIRZ has now been automated and its accuracy confirmed to <3% error on another scanner
- Advantages:
 - SIRZ removes spectral information from the characterization feature space.

SIRZ usefulness still needs to verified for other systems, such as EDSs
The Ratio Feature Space poorly discriminated specimens in early tests.

LAC Ratio is highly-dependent on system spectral response.

Note: Water BHC was performed on 80, 100, and 125 keV sinograms using a water-filled 60-ml Nalgene bottle.
The system spectral response is estimated with standard tools

- System Spectral Response includes the X-ray source, filters and detector
- SOURCE: Monte Carlo or SpekCalc spectra used with cross-section tables to compute expected transmission vs. chord length
- DETECTOR: MCNP models the detector spectrum based on vendor specs
- Spectral estimates are modified by adding filtration until a transmission match is reached across a range of reference specimens (Carbon to Silicon).
- This modeling yields an estimated system spectral response.

Filter thickness errors <5% are sufficient for good spectral response estimates.