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The World of Acoustics Before Signal Processing 
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My Current Research is Focused on Nonlinear, 
Non-Gaussian Signal Processing Problems 
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• Mobility Modeling and Estimation for Ad Hoc Networks of 
 Unmanned Ground Vehicles 
 - Estimate position, velocity and acceleration, given only  
  measurements of Received Signal Strength Indicator  
  (RSSI) signals from fixed or mobile base stations 
 - with Prof. Preetha Thulasiraman, NPS 

 
• Illumination Waveform Design for Non-Gaussian Multi-Hypothesis 

 Target Classification in Cognitive Radar 
 - with a student at NPS 

 
• Statistical Feature Selection for Non-Gaussian Target Classes 

 - with a student at NPS 
 
• Clock Synchronization Through Time-Variant Underwater Acoustic 

 Channels 
 - with Prof. Joe Rice, NPS 



Cognitive Radar Thesis Research Team 
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• Grace Clark, Advisor, Grace Clark Signal Sciences, Livermore, CA 
 Former Visiting Research Professor, ECE, NPS 

 
• Ric Romero, Co-Advisor, Assistant Professor, ECE, Naval Postgraduate 

 School Monterey, CA 
 
• Ke Nan Wang, ENS, USN,  Former MSEE Student, 

 Naval Postgraduate School, Monterey, CA 
 Received Eta Kappa Nu (HKN) Best Thesis Award 

Ric Romero

Ke Nan & Grace



Agenda 
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• Problem Definition: 
 - In our previous non- Gaussian Cognitive Radar work, we simulated 
    Non- Gaussian target signals with closed form pdfs 
 - In this work, we extend our capability so we can use measured Non-
    Gaussian target response signal exemplars to generate the desired samples:  
   
Given only measured target responses, we can draw correlated  
samples with BOTH specified Non-Gaussian pdf and specified  

PSD for Cognitive Radar  
 
• Brief Summary of our work in Cognitive Radar for Non-Gaussian 

 distributed targets 
 
• A complex stochastic simulation algorithm that is simple, fast and provides 

 high quality samples with specified pdf and PSD 
 - Example 

 
• Conclusions 
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Target Distributions 
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A Conventional Radar System Illuminates the Target with a  
Broadband Waveform – Excites all Possible Target Modes 
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Several Problems Motivate Us to Improve on Conventional  
Radars ! Cognitive Radar 

• Illumination waveform power       limitations vs. receiver signal-to-noise ratio (SNR) 
 
• Real-world targets have band-limited radar responses – sparse spectra, 

 but we use a broadband pulse to illuminate the target  
  – wasted energy 

• Inadequate detection/classification performance due to low SNR, etc. 
  P(CC) = Probability of Correct Classification 

 
• Current classification theory assumes complex Gaussian-distributed  

 targets - but real-world targets are often non-Gaussian, or  
 arbitrarily-distributed 

 
• New shared-spectrum applications: 

 Sponsors would like to have communications and radar  
 systems that can share the EM spectrum  
  – Not all frequencies are available at a given time 
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Cognitive Signal Processing Systems Learn from  
the Environment and Adapt their Inputs 

A Cognitive Signal Processing system is one that observes 
and learns from the environment; then uses a dynamic 

closed-loop feedback mechanism to adapt the illumination 
waveform so as to provide system performance 

improvements over traditional systems  

Grace Clark Signal Sciences 10

Early Reference: 
Simon Haykin, McMaster University, Hamilton, Ontario, Canada 
“Cognitive Radar, A Way of the Future,” 
IEEE Signal Processing Magazine, February 2006 



PWE(t) is a Weighted Sum of Individual Optimal  
Matched Target Illumination Waveforms 
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• A single matched illumination waveform is estimated by Maximizing the SNR in the receiver: 
 
• The PSD’s of the individual targets are assumed known a priori from calibration experiments 
 
• The optimal illumination waveform             for a single target is an eigen-solution that has the 

 form of a complex exponential function: 
 
 
 

 where          is the covariance obtained from the PSD of the target signal       . 
 
• The overall illumination waveform                is the weighted sum of the individual optimal  

 target waveforms.  The weights      are prior probabilities: 

/2

max /2
ˆ ˆ( ) ( ) ( )

T

gT
x t x R t dλ τ τ τ

−
= −∫

PWEk (t)
Pi
k

Rg(τ ) g(t)

xi
opt (t)

PWEk (t) = Es Pi
k

i=1

M

∑ xi
opt (t) = Probability Weighted Energy

k = Illumination Iteration Index = 0,1,2,…
i =  Target Index = 1, 2,…M
Es = Energy in the Illumination Waveform
Pi
k = Prior probability for target i at illumination iteration k



A Cognitive Radar System Can Illuminate the Target with a  
Waveform Matched to the Target Classes Known “A Priori” 
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Experiment: Specified PSDs Corresponding to the  
Four Target Classes (Hypotheses) 
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PWE-SNR
Wideband

Cognitive Radar Promises Solutions to Several  
Key Problems in Radar Target Classification 
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For a given Illumination Waveform Energy, the 
Cognitive Radar (red) achieves an 

approximately 100% gain in Probability of 
Correct Classification over the Conventional 

Wideband Radar (Blue). 

• Recent research with my NPS student created a 
   new Cognitive Radar Algorithm for Non-Gaussian
   distributed targets.
     - Using 4 Non-Gaussian targets, we showed:

• We exploit the spectral sparsity of the target 
   responses and create matched waveforms
   with band-limited spectra:

- Saves spectral energy
- Good for low-power, low SNR applications
- Good for shared-spectrum applications

• We can deal with Non-Gaussian distributed targets

Cogni/ve	
Radar

Wideband	
Radar

PCC, for 10 Transmissions

Illumination energy



Classification Performance of the NGCCR Algorithm 
for 10 Transmissions 
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Monte Carlo Setup: 
 
• 50 Target  
   Realizations 
 
• 10 Noise 
    Realizations 
 
 
NGCCR Algorithm 
 Setup: 
 
• 40 Target 
     Realizations for 
     the ensemble 
     averaging
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Given Only Measurements, We Need to Simulate Large Ensembles 
of Target Response Signals for Use With Monte Carlo Algorithms 

Grace Clark Signal SciencesGrace Clark Signal Sciences

 
 
 

Estimate  
pdfs 

 
and 

 
PSDs 

zR (n) = Real Part

zI (n) = Imaginary Part

 
Simulate 

an 
Ensemble 

of  
Signals 

With 
the Same 

pdfs 
and  

PSDs 

f (zR )

f (zI )

SzRzR ( f )

SzIzI ( f )

f (zR )

Given: 
 Measured Complex Radar 
Target Response Signals

SzIzI ( f )

x̂Ri (n){ }i=1
M

x̂Ii (n){ }i=1
M

Ensemble 
of M  

Simulated 
Complex 

Target 
Response 

Signals

17



We Are Accustomed to Drawing i.i.d. Samples from a  
Specified Distribution with a Given pdf 
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• Markov Chain Monte Carlo (MCMC) Methods 
 • Metropolis-Hastings Sampling 
 • Gibbs Sampling 
 • Rejection Sampling 
 • Slice Sampling 
 • Importance Sampling 
  etc. 

• Sequential Monte Carlo (Particle Filter) Methods     

Autocorrelation of x(t) :

Rxx (τ ) = E x(t)x*(t +τ ){ }= 1
2π

Sxx ( f )
−∞

∞

∫ e j2π fτdω

Power Spectral Density (PSD) of x(t) :

Sxx ( f ) = Rxx
−∞

∞

∫ (τ )e− j2π fτdτ

Shh ( f )

Rhh (τ )

f (h)
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Autocorrelation
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For Non-Gaussian Cognitive Radar, We Need  
to Draw Non-Gaussian Correlated Samples 
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Autocorrelation of x(t) :
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For the Cognitive Radar Problem, we need to draw correlated samples 
from a specified pdf (Probability Density Function) and specified 

Power Spectral Density (PSD)  



The pdf and PSD of a Stochastic Process  
Cannot be Specified Independently 
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The pdf  f (x) and the PSD  Sxx (k) are linked 
through the signal mean x  and signal variance σ x

2

f (x)
Rayleigh

Sxx ( f )

x(n)

Sxx (0) = N x( )2 T

          = N σ x
2 −E x2{ }⎡

⎣
⎤
⎦

E x{ }= x = f (x)dx
−∞

∞

∫

σ x
2 = E x − x( )2{ }= E x2{ }− x 2

⇒    x 2 =σ x
2 −E x2{ }

21



We know that the variance can 
be written:

σ x
2 = E x − x( )2{ }= E x2{ }− x 2

⇒    x 2 =σ x
2 −E x2{ }

We see that:

Sxx (0) = N σ x
2 −E x2{ }⎡

⎣
⎤
⎦

Proof that the pdf and PSD of a Stochastic  
Process Cannot be Specified Independently 
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We can show that the pdf  f (x) and the PSD  Sxx (k) 
are linked through the signal mean x  and signal variance σ x

2

Rxx (m) = T x(nT )x (n+m)T[ ]
n=0

N−1

∑

Sxx (k)  = Rxx
m=0

N−1

∑ (mT )e
−
j2π
N

km

           = T x(nT )x (n+m)T[ ]
n=0

N−1

∑
⎧
⎨
⎩

⎫
⎬
⎭m=0

N−1

∑ e
−
j2π
N

km

Sxx (0) = x(nT )
m=0

N−1

∑
⎧
⎨
⎩

⎫
⎬
⎭

 T (n+m)T[ ]
n=0

N−1

∑
⎧
⎨
⎩

⎫
⎬
⎭

 

          =      Nx         •         Tx

Sxx (0) = N x( )2 T
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Literature Survey: The General Approach Uses a Zero 
Memory Nonlinearity (ZMNL) 

23 
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Brief Literature Survey: Generating Correlated Samples 
with Desired pdf and Desired PSD 
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• Inverse CDF Methods can provide a Zero Memory Nonlinearity (ZMNL)   
     -  Use a linear filter to obtain y(n) and to assign the desired spectral properties 
     - The ZMNL function g(.) is given by:   

x(n) = g[y(n)]= Ft
−1 Fy

G[y(n)]{ }
    Ft (⋅) =Desired Target CDF
    Fy

G[y(n)]=Gaussian Proposal CDF
g(⋅) is expanded in terms of Hermite polynomials, so the autocorrelation of  

the ZMNL output can be written as a power series of the autocorrelation 
of y(n). 

-  Solve for the autocorrelation associated with y(n) which makes the ZMNL 
     output best approximate the autocorrelation associated with y(n) 
 
-  The main problem is that         is often not invertible analytically, and 

Finding            numerically is detrimental to the simplicity and  
accuracy of the method  

 - 

F(⋅)
F−1(⋅)

• The Problem: 
     Given i.i.d. Gaussian sequence sequence z(n), desired target pdf/CDF, and desired PSD  
     Generate sequence x(n) with desired pdf and PSD 



New Iterative Algorithm by Nichols et Al. 
Good for Generating Real Correlated Samples  
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For a Real-World Application with a Non-Gaussian pdf, 
The Overall Sampling Process Involves Several Steps 
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Close-Up Block Diagram (See Yellow): 
Simulate Correlated Complex Measurements 
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Close-Up Block Diagram for: 
Simulating Correlated Complex Signal Measurements 
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For a Real-World Application with a Non-Gaussian pdf, 
The Overall Sampling Process Involves Several Steps 
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Close-Up Block Diagram for: 
The MCMC Sampling Step to Generate i.i.d. Samples 
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For a Real-World Application with a Non-Gaussian pdf, 
The Overall Sampling Process Involves Several Steps 
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Close-Up Block Diagram for: 
Correlated Sampling Algorithm 
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Conclusions 
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• Earlier, we used target responses with simulated closed-form pdfs for proof of 
   principle of our non-Gaussian Cognitive Radar algorithms 
 
• The pdf and the PSD cannot be specified independently, because 
   they are linked through the signal mean and variance 
 
• New Capability for Using Real-World Signals in Cognitive Radar: 
      Given only measured complex non-Gaussian target responses, we  
      can now simulate large ensembles of these target responses that have 
      specified pdfs and specified band-limited PSDs 
 
       - Combined the simple and efficient Nichols algorithm with MCMC sampling 
       - “Extended” the algorithm for use with complex signals  

Future Work: 
• Work with realistic simulated target impulse responses 
• Work with real-world target impulse responses 
• Strategies to reduce computational complexity 



The World of Acoustics Before Signal Processing 
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In Cognitive Radar, Illumination Waveform Design Exploits 
the Sparsity of the Bandlimited Target Spectra 
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Power Spectral Density (PSD) Power Spectral Density (PSD)

Toy Example: 
Four complex targets, each with a  
different PSD

The matched illumination waveform  
focuses the spectral energy where the  
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Illumination Waveform Design Assumes that the 
Radar Can Transmit “Arbitrary Waveforms” 
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• Generally, radar systems are built to transmit broadband waveforms 
 
• “Arbitrary Waveform Generators (AWG’s)” are available commercially 
 

 - Given a digital file containing the desired illumination waveform, the  
  AWG, the radar system and antenna convert the digital file to an analog EM 
  field used to illuminate the target(s) 

 
 - For the approach defined here, the desired illumination 
  waveform PWE(t) is computed as described in the  figures and 
  stored in a digital file: 

PWEk (t) = Es Pi
k

i=1

M

∑ xi
opt (t) = Probability Weighted Energy

k = Illumination Iteration Index = 0,1,2,…
i =  Target Index = 1, 2,…M
Es = Energy in the Illumination Waveform
Pi
k = Prior probability for target i at illumination iteration k



PWE(t) is a Weighted Sum of Individual Optimal  
Matched Target Illumination Waveforms 
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• A single matched illumination waveform is estimated by Maximizing the SNR in the receiver: 
 
• The PSD’s of the individual targets are assumed known a priori from calibration experiments 
 
• The optimal illumination waveform             for a single target is an eigen-solution that has the 

 form of a complex exponential function: 
 
 
 

 where          is the covariance obtained from the PSD of the target signal       . 
 
• The overall illumination waveform                is the weighted sum of the individual optimal  

 target waveforms.  The weights      are prior probabilities: 

/2

max /2
ˆ ˆ( ) ( ) ( )

T

gT
x t x R t dλ τ τ τ

−
= −∫

PWEk (t)
Pi
k

Rg(τ ) g(t)

xi
opt (t)

PWEk (t) = Es Pi
k

i=1

M

∑ xi
opt (t) = Probability Weighted Energy

k = Illumination Iteration Index = 0,1,2,…
i =  Target Index = 1, 2,…M
Es = Energy in the Illumination Waveform
Pi
k = Prior probability for target i at illumination iteration k



Pseudo-Code Block Diagram of One Radar Classification 
Evolution 
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An Example of the Monte Carlo Simulation Experiments 
Used to Evaluate Classification Performance 
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Experiment: Probability Density Functions (pdf’s)  
Specified for the Four Target Classes (Hypotheses) 
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Classification Performance of the NGCCR Algorithm 
for 10 Transmissions 
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