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Contact Information for Grace Clark (( GCSS )))

Grace Clark Signal Sciences
Livermore, CA 94550
925-443-5217
GCSS_Grace@comcast.net

Retired October 2013 from:
Lawrence Livermore National Laboratory
Livermore, California

Grace Clark, Ph.D., IEEE Fellow, currently serves as a statistical signal
processing consultant via her business, Grace Clark Signal Sciences, in
Livermore, CA. She retired from the Lawrence Livermore National Laboratory in
October 2013, after a career as a research engineer. She worked earlier at the
Caltech Jet Propulsion Laboratory. Dr. Clark has served as thesis advisor for 10
graduate students: 5 MSECE students at the Naval Postgraduate School, and 3
MSECE plus 2 Ph.D. ECE students at U. of California Davis. She earned BSEE
and MSEE degrees from the Purdue U. Electrical Engineering Honors Program,
W. Lafayette, IN, and the Ph.D. in Electrical and Computer Engineering (ECE)
from the U. of California Santa Barbara. Her technical expertise is in statistical
signal/image processing, estimation, detection, pattern recognition/machine
learning, sensor fusion, communication and control. She has contributed more
than 230 publications on signal processing in acoustics, electromagnetics and
particle physics. She is a Fellow of the IEEE and a member of the Acoustical
Society of America (ASA) Technical Council on Signal Processing in Acoustics,
the Society of Exploration Geophysicists (SEG), Eta Kappa Nu and Sigma Xi.
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The World of Acoustics Before Signal Processing (( GCSS )))
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My Current Research is Focused on Nonlinear,
Non-Gaussian Signal Processing Problems ((( GCSS )))

* Mobility Modeling and Estimation for Ad Hoc Networks of
Unmanned Ground Vehicles
- Estimate position, velocity and acceleration, given only
measurements of Received Signal Strength Indicator
(RSSI) signals from fixed or mobile base stations
- with Prof. Preetha Thulasiraman, NPS

* lllumination Waveform Design for Non-Gaussian Multi-Hypothesis
Target Classification in Cognitive Radar
- with a student at NPS

« Statistical Feature Selection for Non-Gaussian Target Classes
- with a student at NPS

* Clock Synchronization Through Time-Variant Underwater Acoustic

Channels
- with Prof. Joe Rice, NPS



Cognitive Radar Thesis Research Team (((GCSS)))

» Grace Clark, Advisor, Grace Clark Signal Sciences, Livermore, CA
Former Visiting Research Professor, ECE, NPS

* Ric Romero, Co-Advisor, Assistant Professor, ECE, Naval Postgraduate
School Monterey, CA

 Ke Nan Wang, ENS, USN, Former MSEE Student,
Naval Postgraduate School, Monterey, CA
Received Eta Kappa Nu (HKN) Best Thesis Award

Ric Romero 5
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Agenda (((GCSS)))

* Problem Definition:
- In our previous non- Gaussian Cognitive Radar work, we simulated
Non- Gaussian target signals with closed form pdfs
- In this work, we extend our capability so we can use measured Non-
Gaussian target response signal exemplars to generate the desired samples:

Given only measured target responses, we can draw correlated
samples with BOTH specified Non-Gaussian pdf and specified
PSD for Cognitive Radar

* Brief Summary of our work in Cognitive Radar for Non-Gaussian
distributed targets

» A complex stochastic simulation algorithm that is simple, fast and provides
high quality samples with specified pdf and PSD
- Example

 Conclusions
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MAY 3 -4, 2014, PROVIDENCE, RHODE ISLAND

ASA ScHooL 2014
LIVING IN THE ACOUSTIC ENVIRONMENT (( ( GCSS )))

BRIEF SUMMARY OF OUR WORK IN
COGNITIVE RADAR FOR NON-GAUSSIAN

TARGET DISTRIBUTIONS

GRACE CLARK
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p(x)

A Conventional Radar System /lluminates the Target with a
Broadband Waveform — Excites all Possible Target Modes ((( GCSS ))

Broadband
llumination Waveform
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Several Problems Motivate Us to Improve on Conventional
Radars = Cognitive Radar ((( GCSS )))

* lllumination waveform power F limitations vs. receiver signal-to-noise ratio (SNR)

* Real-world targets have band-limited radar responses — sparse spectra,
but we use a broadband pulse to illuminate the target

— wasted energy

Non-Gaussian pdf
60

* Inadequate detection/classification performance due to low SNR, etc. =

P(CC) = Probability of Correct Classification 5 |
« Current classification theory assumes complex Gaussian-distributed 1202 AP S—
targets - but real-world targets are often non-Gaussian, or g
arbitrarily-distributed "I Band-limited PSD

* New shared-spectrum applications:
Sponsors would like to have communications and radar
systems that can share the EM spectrum
— Not all frequencies are available at a given time

Normalized Frequency
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Cognitive Signal Processing Systems Learn from
the Environment and Adapt their Inputs ((( 6CSS )))

~

A Cognitive Signal Processing system is one that observes
and learns from the environment; then uses a dynamic
closed-loop feedback mechanism to adapt the illumination
waveform so as to provide system performance
Improvements over traditional systems

- /

Early Reference:

Simon Haykin, McMaster University, Hamilton, Ontario, Canada
“Cognitive Radar, A Way of the Future,”

IEEE Signal Processing Magazine, February 2006
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PWE(t) is a Weighted Sum of Individual Optimal
Matched Target lllumination Waveforms ((( GCSS )))

* A single matched illumination waveform is estimated by Maximizing the SNR in the receiver:
* The PSD'’s of the individual targets are assumed known a priori from calibration experiments

« The optimal illumination waveform x”'(¢) for a single target is an eigen-solution that has the
form of a complex exponential function:

A 3(1) = f_m #(0)R,(t-T)dr

where R (7) is the covariance obtained from the PSD of the target signal g(z).

T/2

« The overall illumination waveform PWE*(¢) is the weighted sum of the individual optimal
target waveforms. The weights P are prior probabilities:

a PWE*(t)=JE, i P x”() = Probability Weighted Energy O
i=1

k = Illumination Iteration Index =0,1,2, ...
i = Target Index =1,2,... M

E_=Energy in the [llumination Waveform

\ P = Prior probability for target i at illumination iteration k /
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A Cognitive Radar System Can llluminate the Target with a
Waveform Matched to the Target Classes Known “A Priori” ((( GCSS ))

4 )
Estimate Huminat Measurement Noise
M Optimal x'(t) T umination v (1)
Target- “1 Weighted Waveform h 7"/ Measured /Radar Receiver\
x (1) Target Waveform
Matched 2 Sum PWE* (1) Imbulse ) And
Waveforms : Using ResEonse + Ji >  MAP Target
Ofﬂine 0,;z Pric?r. : 0 Classification
Using x, (1) |Probabilities 8i | Algorithms
Calibration >\ J
Measurements A Pt _ PEOV Y V)P,
~ / | N € B ian Iterative Pri A
PV AT IE) A ayesian Iterative Prior
" i=1 Probability Update Algorithm,
PWE*(1)=JE, E\/ P*x"(t) = Probability Weighted Energy fointipdf Estimation; Stochastic
= K Simulation, etc. y

k = Illumination Index =0,1,2, ...
i = Target Index=1,2,... M
E_=Energy in the [llumination Waveform

P* = Bayesian prior used to weight the optimal matched waveform x" (¢)



Experiment: Specified PSDs Corresponding to the
Four Target Classes (Hypotheses) ((( GCSS )))
14. L L L L L L L L L
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Cognitive Radar Promises Solutions to Several
Key Problems in Radar Target Classification ((( GCSS)))

PCC, for 10 Transmissions

7
7/

* Recent research with my NPS student created a [T ITI0
. e . . —— PWE-SNR
new Cognitive Radar Algorithm for Non-Gaussian 0.9~ | e Wideband //
distributed targets. / e/ Cognitive

0.8

- Using 4 Non-Gaussian targets, we showed.: Radar

0.7

0.6

4 For a given Illlumination Waveform Energy, the\

Probablity of Correct Classification

Cognitive Radar (red) achieves an 05 /<———Wideband
approximately 100% gain in Probability of 04 -/ / Radar
Correct Classification over the Conventional o /// /
\_ Wideband Radar (Blue). V. —Y

0.2 1 0
10’ 10° 10 10
Energy per Transmission (Energy Unit)

lllumination energy

» We exploit the spectral sparsity of the target
responses and create matched waveforms
with band-limited spectra:
- Saves spectral energy
- Good for low-power, low SNR applications
- Good for shared-spectrum applications

» We can deal with Non-Gaussian distributed targets
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Classification Performance of the NGCCR Algorithm

for 10 Transmissions

((« GCSS)))
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Monte Carlo Setup:

» 50 Target
Realizations

* 10 Noise
Realizations

NGCCR Algorithm
Setup:

» 40 Target
Realizations for
the ensemble
averaging
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ASA ScHooL 2014

LIVING IN THE ACOUSTIC ENVIRONMENT (( ( GCSS)))

MAY 3 -4, 2014, PROVIDENCE, RHODE ISLAND

STOCHASTIC SIMULATION FOR
DRAWING SAMPLES WITH

BOTH
SPECIFIED PDF AND SPECIFIED PSD

GRACE CLARK
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Given Only Measurements, We Need to Simulate Large Ensembles ( ))
of Target Response Signals for Use With Monte Carlo Algorithms (( GCSS

Given:
Measured Complex Radar Ens?mble
Target Response Signals N e G s 0 M
o f(zg) Simulated
Zg(n) = Real Part RN Complex
LN Target
" 4 N ) g
T o NWM i _ Response
h M‘WW WNW“‘( F(z) . s|mal:1|ate Sionals
”| Estimate 1 (z) Ensemble N
pdfs of {Ze (W}
Signals -
z,(n)= Imagmgry Part and o With >
’ i ZRZR the Same A M
SW il W“WWW Uik | PSDs | pdfs W00,
PSDs
S, (f )| ,
\_ / 1\ /

{ ' ‘

eeeeeeeeeeeeeeeeeeeeeee

Z |
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We Are Accustomed to Drawing i.i.d. Samples from a
Specified Distribution with a Given pdf ((( GCSS)))

* Markov Chain Monte Carlo (MCMC) Methods
» Metropolis-Hastings Sampling
» Gibbs Sampling

Probability den31ty functlon (pdf)
iy

* Rejection Sampling
» Slice Sampling L T
* Importance Sampling
etc. Autocorrelation

05- th (T)
. OF st A A
nutocorrelatlon of x(7): \

R (1) = E{x())x"(1+7)} = i j S (e dw

* Sequential Monte Carlo (Particle Filter) Methods ‘ }

Power Spectral Den31ty (PSD)

Power Spectral Density (PSD) of x(7): Shh (f ) |
$.(f)= [ Ru@e " dr ' | } |
N V ‘NM I M i HWM W

rrrrrrrrrrrrrrrrrrrrr

05 -04 -03 0.3
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Example: MCMC Sampling Algorithms Draw )
i.i.d. Samples from the Target Distribution You Provide ((( GCSS ))

F(x) e I

Target pdf Vector of i.i.d. Samples Estimate of the
MCMC Drawn from f(x) Target pdf f(x)
Sfwy | Sampling h(n) [par] S ,
A N Draw i.i.d. > Est >

LI R Samples o e Pt oyl Poess 950 )
(%) L%MMWWMWWWww.xuW«MWMWWwWM« | j AN
Proposal pdf \ / T me W we  w we  wo LR N
O_s(e.g. Gaussian) 1 R (1) } ‘ ‘
0a TT(X)
2(x): N(O.1) )

W\«

4 0.5

05 -04 -0 -0.1 0:
. Normalized Frequency (Hz)
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For Non-Gaussian Cognitive Radar, We Need

to Draw Non-Gaussian Correlated Samples

((« GCSS)))

For the Cognitive Radar Problem, we need to draw correlated samples
from a specified pdf (Probability Density Function) and specified

Power Spectral Density (PSD)

Autocorrelation of x(7) :

R_(7)= E{x(z)x*(z + 7:)} = % j S_(He*™dw

Power Spectral Density (PSD) of x(7):

S (f)= }Rxx(r)e'jz”f’dr

Grace Clark Signal Sciences

So

Non-Gaussian pdf

02 001 0 001 002 003 004
g

Band-limited Signal PS

Normalized Frequency



The pdf and PSD of a Stochastic Process
Cannot be Specified Independently ((( GCSS )))

The pdf f(x) and the PSD S_ (k) are linked

L
through the signal mean X and signal variance o :WL WMWMWWWWWWMMMMMWWM

Real Part of f(w) = pdf Est. for signal w
Npts = 1024, N pdf desired = 512
0.08 T T T T T T
0.06 f(x ) 1
§ 0.04
p Rayleigh
0.02 B
0 L L L L 1
20 -10 0 10 30 40 50

XXXXX

Sww(f) Est. for the Signal w
Length Sxx = 1024

Am M ﬁ\m

"
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Proof that the pdf and PSD of a Stochastic
Process Cannot be Specified Independently

((« GCSS)))

We can show that the pdf f(x) and the PSD §_ (k)

are linked through the signal mean X and signal variance o

R, (m)= TE x(nT)x[(n+m)T]

N-1 _]2.7tk

S.(k)y =R _(mT)e "

n=0

S _(0)= { x(nT)} { E (n+m)T}

= Nx . Tx

m=0

= E {TE x(nT)x[(n + m)T]} j%km

{SXX(O) =N(Z)'T } <

Grace Clark Signal Sciences

We know that the variance can

be written:
o’ =E{(x—)_c)2}=E{x2}—)_c2
= ¥ =ot-E{x)

We see that;

LSXX(O) -N|a?- E{x2}ﬂ

N
(\o)



Literature Survey: The General Approach Uses a Zero
Memory Nonlinearity (ZMNL)

(((eess)))
Gaussian proposal pdf fyG (y)
Given Stationary i.i.d.

Gaussian sequence

Target pdf ' (*) v
Li Fil
g 1neflrr i te; S; / TV \
z(n) (f_) ~ arget y(n) 5 Zero Memory x(n)=g [y (”)]
> y ) ) >
«(n)~N{01] y(n)~ N[O, 1] Nonlinearity x(m) ~ f'(x)
with White PSD \_ Tl - with Target PSD ~ \ _ 98 /  with target PSD
05 : 05 ., Non-Gaussian
.l CGaussian | .| Gaussian ] ol
- O‘S‘fZG(Z) _ o3} fG(y) ) 40l ,
pdf: £, , s, 7 ' 2= fe (%)
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.0 SS(f) i : | . t
PSD.; 8- 1Mz 1 .«é__v; A yy(f) | x| Sxx(f)
2 U “ ' ] r
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0.5
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Brief Literature Survey: Generating Correlated Samples
with Desired pdf and Desired PSD ((( GCSS )))

* The Problem:
Given i.i.d. Gaussian sequence sequence z(n), desired target pdf/CDF, and desired PSD
Generate sequence x(n) with desired pdf and PSD

* Inverse CDF Methods can provide a Zero Memory Nonlinearity (ZMNL)
- Use a linear filter to obtain y(n) and to assign the desired spectral properties
- The ZMNL function g(.) is given by:

x(n) = gly(m)] = F{F [y(m]}
F,(-) = Desired Target CDF
F;[y(n)] = Gaussian Proposal CDF

- g(*) is expanded in terms of Hermite polynomials, so the autocorrelation of
the ZMNL output can be written as a power series of the autocorrelation

of y(n).

- Solve for the autocorrelation associated with y(n) which makes the ZMNL
output best approximate the autocorrelation associated with y(n)

- The main problem is that F(-) is often not invertible analytically, and
Finding F ) numerically is detrimental to the simplicity and
accuracy of the method
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New Iterative Algorithm by Nichols et Al.
Good for Generating Real Correlated Samples

((« Gcss)))

i.d. Samples

s(n)

Scaling so the signal has
variance consistent with x,(n)
> Parseval’s Theorem and

(

e (f(x)

I cess sl0(t)

4 \ - -
Sort from XO(In),n—O,l,,“,N 1

smallest | x,(/,)<x,(I,)<---<x,(I,_)

EW

> to largest

at

i

U

”h

Rank(k-1)?

x(J,)=x(J, )+X | A

x(J,)

v

the Desired PSD. and store
WWMM‘l‘xﬂwwmmW},WWWWW @ Remove the mean. ) result
““““ : R
f(S)Rea ov:(g;‘) \ ( k _ k + 1 J \
N\ I {Give signal same phase, but}
_ o Target Fourier magnitudes
S (f) Yes _ Rank(k)= <)

Bring pdf in line with target pdf: Shuffle x,(n)

so it has same rank as x(7). Smallest value

of X, (n) is given same position in signal as
smallest value of x(n) , etc.

vx(J,)

Stop <
x(J,) has the same

X,(n) and similar PSD

pdfas  x(J )=x,(I,), n=0,1,...,N-1
x(J)<x(Jy)<-<x(Jy)
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For a Real-World Application with a Non-Gaussian pdf,
The Overall Sampling Process Involves Several Steps

((« Gcss)))

Real Part of the Complex Process zR(t)

Npts = 1024
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Close-Up Block Diagram (See Yellow):

Simulate Correlated Complex Measurements

((« GCSS)))

/" Simulate ! Y N / | \
Correlated |! 7.(n) odf f(zp) Mark_ov Sk (n)\ Correlated_Sam.pllng
Complex : Est Chain Algorlt.hm.
Measurements |, - Monte Iterative
with I Carlo Spectral Constraints
Non-Gaussian || Sampling and Magnitude
pdf I n Sorting
: | : ) pdf A, Drawiid. | ! (n)
Correlated . Est. Samples Draw Correlated
\_ PSD J7~_ Samples
Real Iex Process zR(t) “ 1 3%' ; ( \ J

JL‘ - /ou;t.ﬂ

\!J

mﬂu\ N
0.3 0.4 05

Normalized Frequency (Hz)

(X))

ttttt

rea\

Sorsr (f )

” m (

Grace Cl uk Sl nal Sciences

m

UI 'r

')/‘\:R (n)
R s




Close-Up Block Diagram for:
Simulating Correlated Complex Signal Measurements ((( GCSS )))
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For a Real-World Application with a Non-Gaussian pdf,
The Overall Sampling Process Involves Several Steps

((« Gcss)))

Real Part of the Complex Process zR(t)
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Close-Up Block Diagram for:
The MCMC Sampling Step to Generate i.i.d. Samples ((( GCSS)))
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For a Real-World Application with a Non-Gaussian pdf,
The Overall Sampling Process Involves Several Steps

((« Gcss)))
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Close-Up Block Diagram for:
Correlated Sampling Algorithm

((( GCSS)))
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Conclusions (((GCSS)))

 Earlier, we used target responses with simulated closed-form pdfs for proof of
principle of our non-Gaussian Cognitive Radar algorithms

* The pdf and the PSD cannot be specified independently, because
they are linked through the signal mean and variance

/- New Capability for Using Real-World Signals in Cognitive Radar: A

Given only measured complex non-Gaussian target responses, we

can now simulate large ensembles of these target responses that have
specified pdfs and specified band-limited PSDs

. /
- Combined the simple and efficient Nichols algorithm with MCMC sampling
- “Extended” the algorithm for use with complex signals

Future Work:

» Work with realistic simulated target impulse responses
« Work with real-world target impulse responses

« Strategies to reduce computational complexity
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The World of Acoustics Before Signal Processing (((GCSS)))
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IS_x(f)P

In Cognitive Radar, lllumination Waveform Design Exploits
the Sparsity of the Bandlimited Target Spectra

Four complex targets, each with a
different PSD

Power Spectral Density (PSD)
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IS_x(f)P

((« GCSS)))

The matched illumination waveform
focuses the spectral energy where the
target spectra reside

Power Spectral Density (PSD)
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Both Waveforms Have Total Energy = 1 unit
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lllumination Waveform Design Assumes that the
Radar Can Transmit “Arbitrary Waveforms” ((( GCSS )))

» Generally, radar systems are built to transmit broadband waveforms
« “Arbitrary Waveform Generators (AWG’s)” are available commercially

- Given a digital file containing the desired illumination waveform, the
AWG, the radar system and antenna convert the digital file to an analog EM
field used to illuminate the target(s)

- For the approach defined here, the desired illumination
waveform PWE(t) is computed as described in the figures and
stored in a digital file:

/

M \
PWE*(1)=E, E« | P x(t) = Probability Weighted Energy

i=1
k = [llumination Iteration Index =0,1.2, ...
i = Target Index=1,2,... M

E = Energy in the I[llumination Waveform

k P = Prior probability for target i at illumination iteration k /
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PWE(t) is a Weighted Sum of Individual Optimal
Matched Target lllumination Waveforms ((( GCSS )))

* A single matched illumination waveform is estimated by Maximizing the SNR in the receiver:
* The PSD'’s of the individual targets are assumed known a priori from calibration experiments

« The optimal illumination waveform x”'(¢) for a single target is an eigen-solution that has the
form of a complex exponential function:

A 3(1) = f_m #(0)R,(t-T)dr

where R (7) is the covariance obtained from the PSD of the target signal g(z).

T/2

« The overall illumination waveform PWE*(¢) is the weighted sum of the individual optimal
target waveforms. The weights P are prior probabilities:

a PWE*(t)=JE, i P x”() = Probability Weighted Energy O
i=1

k = Illumination Iteration Index =0,1,2, ...
i = Target Index =1,2,... M

E_=Energy in the [llumination Waveform

\ P = Prior probability for target i at illumination iteration k /
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Pseudo-Code Block Diagram of One Radar Classificatio
Evolution ((6ess)))

_’I For k=1:# of transmissions

Compute the PIWWE(?) based on the SNR criterion with the proper
probability update

Targetrealization of g, based on the " hypothesis

Simulate measurement data y; = .JE‘,ng__ +n,

| Fori=1:# of hypotheses

Compute the conditional PDF for each target hypothesis (for k"
transmission),
J is the number of online targetsin the target ensemble (J =40)

2 Vs )__Zexp[—Z(t —j;j)HK_(.I(J‘k—ﬁf)]

p(n Yaseu V)R
?p(1 Vasees Vi By

Update the prior by RH
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An Example of the Monte Carlo Simulation Experiments
Used to Evaluate Classification Performance (( GCSS )))

Forkl =1: # of energy levels

A 4

Energy Level = Energy(kl)

| Fork2 =1: # of hypotheses (M)

Emor=10

v

For k3 = 1: # of target realizations

Generate a targetbased on hypothesisk2

»| Forkd=1: # of noise realizations

Perfonm target classificationbased on one noise realization

If wrong, increment Error by 1

End

Emror Rate= Emor / (¥ of targetrealizations) / ( = of noise realization)

End

End

Overall Emor Rate @ Energy(k1) = Error Rate /= of hypotheses

End
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Probability Density Functions (pdf’s)
Specified for the Four Target Classes (Hypotheses)

((« Gcss)))

Target Hypotheses Target PDFs (PDF parameters) u o
Target # 1 Complex Rayleigh (o =10) 0.15 0.01
Target # 2 Complex Exponential (u = 2) 0.2 0.015
Target # 3 Complex Gamma (k = 2,6 = 2) 0.25 0.02
Target # 4 Complex Log-Normal (¢ =0,0 =1) 0.3 0.025

Grace Clark Signal Sciences
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Classification Performance of the NGCCR Algorithm

for 10 Transmissions

((« GCSS)))

PCC
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Monte Carlo Setup:

» 50 Target
Realizations

* 10 Noise
Realizations

NGCCR Algorithm
Setup:

» 40 Target
Realizations for
the ensemble
averaging
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