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Outline & Introduction

•  Very brief introduction to inertial confinement fusion challenges tackled 
here.

•  What is MRA? Wavelets, Curvelets, Ridgelets, Annulets, etc.
•  Target surface imperfections characterization.
•  MODEM: Ylm’s, WLT’s & DCT: Doing it on the Sphere. AFM Data.
•  Filtering overlapping circular patches of a great circle around a spherical 

target surface: a MODEM technique for phase shifting spherical diffractive 
interferometric data. 

•  Should isolated defect specs incorporate coherence or clustering effects?
•  ICE Surface Roughness: X Ray Phase Contrast Imaging Analysis
•   Radiation asymmetry Characterization
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The Scope of the Work on ICF 
Target Characterization
•  Apply advanced multiresolution analysis techniques to the characterization of target surfaces, be 

they internal or external, via optical interferometric, AFM or X-ray transmission data and X ray 
Phase Contrast Imaging for ICE.

•  The first three methods of data collection accentuate global scale spherical features, local defect 
or bump sequence information and very fine scale imperfections on the microscopic level. The 
local defects have been isolated (decontaminated from artifacts), classified and sorted (statistics 
extracted)

•  Our techniques are part of our Morphological Diversity Extraction Method (MODEM) here 
adapted to ICF capsule surface data.

•  We have successfully separated the Global features which are best captured by Ylm’s, local 
defects best captured by isotropic undecimated wavelet transforms, and artifacts best captured 
by overlapping local DCT’s.

•  PSSDI data has also been separated into global scale variations, localized defects and diffractive 
artifacts. The local defects have then been detected, estimated, classified and sorted (ie their 
statistics extracted)

•  We have also characterized the precision radiography data using fractal signatures of the wavelet 
decompositions of these noisy data sets.

•  X Ray PCI data has been denoised using Annulets and the resulting ICE surface nonuniformity 
quantified using one or more images (out of 200) to see how many Annulets require: 1.
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What Are Wavelets?�
Start @ (www.wavelets.org) & Surf 
(Mathsoft, amara, ...)

•  Wavelets are localized kernels or atoms in PHASE SPACE.
•  You may think of them as basis functions with prescribed dilation and 

translation properties.
•  They may or may not be orthonormal or have compact support or be 

differentiable everywhere, or be fractal, or have many zero moments.
•  Wavelets are like breathing wave packet envelopes which can home in on 

structures in phase space better than FT or WFT ever could.

ψ j, k x( ) = 2 j 2Ψ 2 j x − k
2 j

⎛ 
⎝ 

⎞ 
⎠ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ; j,k ∈Ζ

Ψn x( ) = −1( )n d
n

dxn
exp −κ x − xc( )2 2( )[ ]

When the scale is decreased
translation steps between
 wavelets should likewise be
 decreased

Mallat, Meyer, Daubechies, Coifman, Vetterli, Jaffard, Donoho, Starck, Candes...
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What is MRD or�
Multi-resolution Decomposition?

•  Multiresolution: Zoom in and out on a number of successively finer 
scales in a sequence of nested approximation subspaces {Vj}j in Z.

•   In general, get an overcomplete basis set in L2(R).                   
Approximate (or truncate) by bounding the scales of interest.

Scaling functions and the scaling equation:  The Wavelets:

ϕ x( ) = 2 hkϕ 2x − k( )k =0

2 N −1∑
hk = 1

k
∑

ψ x( ) = 2 gkϕ 2x − k( )
k= 0

2N −1∑
gk = −1( ) k h2 N−1− k

These filters decompose a sampled signal into 2 sub-sampled channels:
the coarse approximation of the signal and the missing details at finer scales.
The original signal can be reconstructed from these channels by interpolation.

ϕ x( )
−∞

∞

∫ dx = 1

Low pass filter High pass filter
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Discrete Wavelet Transforms &�
Perfect Reconstruction Subband 
Coding (Quadrature Mirror) Filters

DWTs can be orthonrmal decompositions:

f (t) = ck φk t( )
k
∑ + djk ψ jk t( )

k
∑

j= 0

J

∑

The number of operations required to perform DWTs with a filter of length L
 (with L taps) is of order L x N (Even FFTs require N log N operations)

L N 1 +
1
2

+
1
22

+ ...
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ < 2LN

cm = f (t) φm t( )∫ dt, dlm = f (t)ψ lm t( )∫ dt
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•  THRESHOLDING
•  Two Ways to do it:
•  Linear or Scale Thresholding
•  Nonlinear or Largest Coefficient Thresholding
•  Linear is Fourier like: Keep down to some scale and chop off the rest
•  Nonlinear Thresholding is the true breakthrough: Keep those 

wavelets which have the largest coefficients no matter where they are 
and on whatever scale they are. No need to keep intermediate scales or 
intermediate locations. Just keep the BIG stuff. Automatically 
denoise, automatically compress and automatically bring out 
significant patterns.

The Key to Multi-Rresolution 
Analysis Using Wavelets Is:
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The Scaling Function and Wavelet �
for Haar or Daubechies 1�
in X-Space
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The Secret is to Exploit Sparsity 
in the Appropriate (Dual) Space

Ordered List index 

few large coefficients 

many small coefficients

In as much as you can decompose a given signal in some redundant library of functions
where the large ones will be far fewer in number than the small ones, a hard
thresholding technique will give rise to a sparse representation with controllable error.

� 

s = αγφγ
γ

∑
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Discrete Wavelet Transform (MRA)�
vs a Continuous Fourier Transform

Its Fourier Transform
Coefficients (circa 1800)

∫
∫

∞

∞−

∞

∞−

−

=

=

dfefXtx

dtetxfX

ift

ift

π

π

2

2

)()(

)()(
A time domain signal

Haar Wavelet decomposition (1909): 
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Three Handy MRA Tools �
for Generic Feature Detection:

Stationary textures

Locally oscillatory 
patterns

Use DCT

Piecewise smooth objects

Isotropic structures

Use Isotropic 
Undecimated Wavelet 
Transforms

Piecewise smooth 
anisotropic objects, 
edges

Use Curvelets
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Some Typical Wavelets (They 
Have Different phase Space 
Localization Features)
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How Is Phase Space Tiled 
Differently in the Case of Diracs, 
DCT, STFT and WLT?
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The Classical Orthogonal Wavelet 
Transform in 1D (OWT)

� 

sl = cJ ,k
k
∑ φJ ,l (k) + ψ j,l

j=1

J

∑
k
∑ (k)w j ,k

2

2
2

2
C0

H

G

C1

W1

H

G

C2

W2

� 

c j +1,l = hk−2l
h
∑ c j ,k = (h ∗c j )2l

w j +1,l = gk−2l
h
∑ c j,k = (g ∗c j )2l

  

� 

c j,l = ˜ h k + 2l
k
∑ c j +1,k + ˜ g k + 2lw j +1,k = ˜ h ∗ ⌣ c j +1 + ˜ g ∗ ⌣ w j +1

⌣ x = (x1,0, x2,0,x3,…,0,x j ,0,…,xn−1,0,xn )

Reconstruction:
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Transform Has the Sum Of Its 
Components as its Inverse
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16Curvelets Obey Parabolic 
Scaling (length ~ width2): 
Sparsely Represent Edges in 2D

Curvelet

Wavelet
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The Isotropic Undecimated �
Wavelet Transform on the Sphere 
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The Isotropic Undecimated �
Wavelet Transform of CMB

J = 5

J = 4

J = 3

J = 1 J = 2
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19The Isotropic Pyramidal�
Wavelet Transform on the 
Sphere 

j=2

j=3

j=4

j=1

j=5
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Ridgelets on the Sphere
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Curvelets on the Sphere
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22What Does an ICF Spherical Target 
Surface Look Like (Stitched 
Together from AFM Traces)?

• 300 x exaggerated fine scale spikes, 
just for visualization clarity. 990 µm 
Direct Drive ICF target

• Ultimate goal, identify what kind of
imperfections, flaws, manufacturing errors
with what kind of statistical properties,
will likely cause a failure mode in the
implosion dynamics.

• Can’t inspect entire surface of every target
for a functioning laser fusion facility where
The rep. rate is 5-10 Hz! 

• Can’t inspect entire target when it is encased 
in a radiation (hohlraum) cage even
with little slits or holes.
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AFM Full Spheremap Data �
in Mollweiede Format



BBA MODEM & ARAC
CASIS May 18 2016

Polymath
Research Inc.

ω
pe
2 = 4πne e

2

me

e2

!c
≈
1
137

24MODEM in Action Local Gaussians 
Bumps + Lines + Noise Are 
Successfully Separated



BBA MODEM & ARAC
CASIS May 18 2016

Polymath
Research Inc.

ω
pe
2 = 4πne e

2

me

e2

!c
≈
1
137

25

The Idea Behind Morphological 
Diversity Extraction (MODEM)

A dictionary D is defined as a collection of waveforms                . The goal is to obtain a 
representation of a signal s with a linear combination of a small  number of basis functions so 
that:

� 

φγ( )γ ∈Γ

� 

s = αγφγ
γ

∑ ==> Minimizes                         subject to   

� 

α 0

� 

s = φα

Dictionary 

Others Curvelets 

Local DCT Wavelets 

  

� 

φ = φ1,…,φL[ ], α = α1,…,αL{ }, s = φα = φkk=1

L∑ αk
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Where M is the mask: M(i,j) = 0  ==> missing data 
                                    M(i,j) = 1  ==> good data 

Interpolation of Missing Data 

• Redundant Multiscale Transforms and their Application for Morphological Component Analysis, Advances in Imaging and Electron Physics, 132, 2004.
• Image Decomposition Via the Combination of Sparse Representation and a Variational Approach, IEEE Trans. on Image Proces., 14, 10,  pp 1570--1582, 2005

• Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA), ACHA, 2005. 
• Inpainting and Zooming using Sparse Representations,  The Computer Journal , in press. 

Alternate Theoretically Tractable 
Approaches: Morphological 
Component Analysis (MCA) 

  

� 

MINs1 ,…,sL
Tksk pk=1

L∑

� 

s− skk=1

L∑
2

2

< εsubject to 

  

� 

MINs1 ,…,sL
Tksk pk=1

L∑

� 

M(s− sk )k=1

L∑
2

2

< εsubject to 
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AFM Full Spheremap Data �
in Mollweiede Format
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Separating the Global Features 
in the AFM Data Leads to This
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29Almost All the Artifacts Contained �
in the Stitched AFM Data Are 
Separated in This Image
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30The Important Localized Structures �
Have Been Isolated Using MODEM�
on Spherical Surface AFM Data�
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Global Features + Localized Bumps 
= Spheremap Data - Artifacts
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Let’s Look at the Partition of the Feature 
Specific Spherical Harmonic Power 
Density: Low Modes First

10- 1
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0 5 10 15 20

Low Mode Power Spectrum of AFM Data and
 MODEM Feature Separated Components

    Power Spectrum (AFM Data)
   Power Spectrum (Large Scale Structures)
   Power Spectrum (Bumps)
   Power Spectrum (Artifacts)
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33Let’s Look at the Breakdown of the 
Feature Specific Spherical Harmonic 
Power Density: Higher Modes
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There is up to an Order of Magnitude 
Variation in the “m” Coefficients �
at a Given “l” For the High Modes
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So Phase Matters!



BBA MODEM & ARAC
CASIS May 18 2016

Polymath
Research Inc.

ω
pe
2 = 4πne e

2

me

e2

!c
≈
1
137

35

Integrated Hydro Simulation Inferred (Haan) 
Instability Growth Factors at Maximum 
Velocity for Outer Surface Perturbations 
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36Final Power Spectra After 
Implosion, at Peak Velocity, for �
CH Outer Layers
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37Final Power Spectra After 
Implosion, at Peak Velocity, for �
Be Outer Layers
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A Comparison of the Final Power 
Spectra for Be and CH Layers

10- 3

10- 2

10- 1

100

101

102

103

104

105

106

0 50 100 150 200 250 300 350 400

Fourier Mode Power Spectrum:
 Global Structures + Bumps  CH & Be Haan GF Boosted

      Power Spectrum Be
      Power Spectrum CH

   
  (

2l
+1

)-1
  S

um
 { m

 =
 - 

l ,
 l}

  |
a lm

|2

l, mode #

“Diamond” Should Beat
 Both of These
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Reconstruction of the Outer 
Surfaces After Implosion at 
Peak Velocity for a CH Layer

Peak Amplitudes Are
Large Enough to Cause
Failure ~ 27 µm
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Reconstruction of the Outer Surfaces After 
Implosion at Peak Velocity for a CH�
Layer (Without MODEM Separation)
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41Reconstruction of the Outer 
Surfaces After Implosion at Peak 
Velocity for a Be Layer

This target is 
fine vis a vis 
high mode 
outer surface 
defects ~ 7 µm 
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Reconstruction of the Outer Surfaces After 
Implosion at Peak Velocity for a CH�
Layer (Without MODEM Separation)
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The Detection and Classification 
Process in MODEM:
• Identify Isolated Features

• Measure Their Heights (signed and separately)

• Measure Their Ellipticity: 

(Minor and Major Axes FWHM Lengths)

• Measue their Relative Positions (coordinates) on the 
Sphere

• Identify Clustering by 2 Pt. Correlation Functions 
and Compare to a Poisson Process
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Here is the Feature Detection 
for the Be Shell After Implosion
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Same Exercise But with Raw 
Data with Be layer Implosion
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Same Exercise with a CH Layer 
After Implosion at Peak Velocity
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Now Just the Artifacts (DCT)�
for CH
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Just the Isolated Bumps (WLT)�
for CH

CH
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Its Good to Know that When 
There Aren’t Any, It Does Not 
Find Any (here it found 5)
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The Size vs Height Distribution of the 
Isolated Bumps on the CH and Be Layer 
Targets After Implosion at peak Velocity
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Distinguishing Diamond, CH & Be: 
Integrated Hydrodynamic Haan 
Growth Factors
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Make sure perturbations do not grow 
to be larger than the shell diameter at 
maximum implosion velocity to ensure 
target structural integrity
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Features of Localized Bumps in Al 
Coated GDP-1 Eccentricity & Angle
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Features of Localized Bumps in 
Al Coated GDP-1 H v L & Locs
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Be Target Surface Image Obtained by 
Spherical Diffractive Interferometry�
BeS2NIF319-01_sur_deg50_SG_R0393.500xc491yc508sg#5_rf0.70
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The Localized Structures Can Be 
Isolated Using MODEM Techniques �
BeS2NIF319-01_sur_deg50_SG_R0393.500xc491yc508sg#5_rf0.70
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The Residue Can Also Be Extracted 
Using MODEM Techniques �
BeS2NIF319-01_sur_deg50_SG_R0393.500xc491yc508sg#5_rf0.70
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Be Target Surface Image Obtained by 
Spherical Diffractive Interferometry�
BeS2NIF319-01_sur_deg150_SG_R0380.500xc493yc516sg#5_rf0.70



BBA MODEM & ARAC
CASIS May 18 2016

Polymath
Research Inc.

ω
pe
2 = 4πne e

2

me

e2

!c
≈
1
137

58

The Localized Structures Can Be 
Isolated Using MODEM Techniques
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We Have Also Applied 
MODEM to CH Coated Spheres
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The Desired Localized 
Structures Are Isolated Here
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Here is a CH (Plastic) Spherical�
Shell Piece with LDI the Technique
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The Desired Localized 
Structures Are Isolated Here
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63The Successfully Isolated Diffraction 
Effects off Defects, Dust Particles �
and Misalignment Artifacts Are:
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64A CH Sequence of 18 Medallions 
around a Great Circle ~ 20% Area�
of the Surface of a Sphere (100 Deg)
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65A CH Sequence of 18 Medallions 
around a Great Circle ~ 20% Area�
of the Surface of a Sphere (140 Deg)
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66A CH Sequence of 18 Medallions 
around a Great Circle ~ 20% Area �
of the Surface of a Sphere (200 Deg)



BBA MODEM & ARAC
CASIS May 18 2016

Polymath
Research Inc.

ω
pe
2 = 4πne e

2

me

e2

!c
≈
1
137

67A CH Sequence of 18 Medallions 
around a Great Circle ~ 20% Area �
of the Surface of a Sphere (220 Deg)
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68A CH Sequence of 18 Medallions 
around a Great Circle ~ 20% Area of 
the Surface of a Sphere (260 Deg)
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69A CH Sequence of 18 Medallions 
around a Great Circle ~ 20% Area of 
the Surface of a Sphere (300 Deg)
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70A CH Sequence of 18 Medallions 
around a Great Circle ~ 20% Area of 
the Surface of a Sphere (340 Deg)
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71A CH Sequence of 18 Medallions 
around a Great Circle ~ 20% Area of 
the Surface of a Sphere (360 Deg)
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72Accumulated Statistical Distribution of 
Heights and Sizes of Localized 
Structures Around the 20% Belt
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ICE Roughness: X Ray Phase 
Contrast Imaging Generated �
Single (not 200 averaged) Image
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G

H

Annulet Transform: (1+1)D  (bi-) orthogonal WLTs, eg. 3 scales along x, two 
scales along y 

Wavelet j=1 Wavelet j=1 

Convolve each row by the low pass filter H to get one row of the blue part (coarse) 
Convolve each row by the low pass filter G to get one row of the green part (wavelet) 

DATA 

Wavelet j=2 

Coarse scale Coarse scale 

H

G

I. 1D WLT TRANSFORM ALONG ROWS  

II. 1D WAVELET TRANSFORM ALONG COLUMNS  

Convolve each column by the low pass filter H to get one column of the blue part (coarse) 
Convolve each column by the low pass filter G to get one column of the green part (wavelet) 

G

H

Repeat the same process for the next scale 

1,1 

1,2 2,2 

2,1 3,1 

3,2 

OUTPUT 
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� 

φ j,l (k) = φ k − l
2 j

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ψ j ,l (k) =ψ k − l
2 j

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

Pl,m
(1) (kx,ky ) = φJx ,l (kx )φJy ,m (ky )

Pjy ,l,m
(2) (kx,ky ) = φJx ,l (kx )ψ jy ,m

(ky )

Pjx ,l,m
(3) (kx,ky ) =ψ jx ,l

(kx )φJy ,m (ky )

Pjx , jy ,l ,m
(4 ) (kx,ky ) =ψ jx ,l

(kx )ψ jy ,m
(ky )

sl,m = cJx ,Jy ,kx ,ky
kx

∑ Pl,m
(1) (kx,ky ) +

ky

∑ wJx , jy ,kx ,ky
Pjy ,l,m
(2) (kx,ky )

jy =1

Jy

∑
kx

∑
ky

∑ +

w jx ,Jy ,kx ,ky
Pjx ,l ,m
(3) (kx,ky )

jx =1

Jx

∑
kx

∑
ky

∑ + w jx , jy ,kx ,ky
Pjx , jy ,l ,m
(4 ) (kx,ky )

jx =1

Jx

∑
jy

Jy

∑
kx

∑
ky

∑

s = data,   sl,m=pixel value at position (l,m)  
Jx=Number of scales in the x directions,       
Jy= Number of scales in the y directions 
jx,jy= scale index in the x and y directions,   
kx,,ky = pixel index in the x and y directions, 
c  = coarse scale coefficients,                          
w = wavelet coefficients, 
    = 1D scaling function,      
    = 1D wavelet function 

� 

φ

� 

ψ

The (1+1)D WLT or Annulet 
Transform for Anisotropic Data
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76ICE Roughness: X Ray Phase 
Contrast Imaging Generated �
Single Annulet Denoised Image
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ICE Roughness: X Ray Phase Contrast 
Imaging Generated Single Image’s 
Residual After Denoising
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The ICE Layer (Single Image) 
Unwrapped, Denoised, Residual
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79Registration & Averaging of 1, 2, 5, 10, 20 & 80 
ICE  X ray PCI Images Followed By Annulet 
Denoising and rmin(θ) and rmax(θ) Extraction 
(Differences Are Sub Pixel w/o Fitting (yet))


