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Listening to the Universe with Advanced LIGO

Signal Detection and Inference in Gravitational-Wave
Astronomy

Rory Smith
CASIS, LLNL 05.18.16



GW astronomy

e September 14 2015

e Two black holes 29 and 36 times the mass of
the sun merged to form a new black hole

e 1.3 Billion light years away

e New black hole is 62 times the mass of the
sun
o 3 times the mass of the sun converted
directly into energy in the form of
gravitational waves
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LIGO Observatories are operated
by Caltech and MIT
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Longer arms, bigger signal!

Strains around 102° km/km (change of around 1000%" proton width over 4km)



astrophysical sources
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GW science

physics

e test fundamental properties of space-time

e how does matter behave under extreme gravity?
e do black holes have structure?

astrophysics
e what triggers gamma ray bursts?

Cosmology/cosmogrophy
e Mapping the gravitational wave sky



From signals to astronomy

e Detecting GW signals against detector noise
m Transient sources
m Continuous sources

e Inference: extracting physics & astrophysics from GWs from binary black
holes



Transient GWs: compact binary coalescence

e Well modelled:
o  Approximate (semi-) analytic methods
o  Supercomputer simulations - “numerical
relativity”

e Use matched filtering to rank events/triggers by
their SNR

® Space of all signals described by 15-parameter
space of filters: in practice we're limited to
searching within a subset of template space

Hanford, Washington (H1)

Livingston, Loulsiana (L1}
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“Generic” transient searches

Includes:

@)
@)
@)

Compact binaries
“Bursts” of GWs
Supernovae

Unmodeled searches

O

superposition of wavelets/sine-Gaussians to
“build” generic filters

Non—amsymmetnc Rotational Instabilities
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THE ART OF NAMING GLITCHES
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Noise and glitches |

e Signals should be coherent/coincident in
detectors (modulo light-travel-time) and
glitches shouldn’t be.
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Continuous waves: Pulsars

® Pulsars emit continuous stream of GWSs at roughly
constant frequency
o Targeted searches of known pulsars (Crab, Vela):
use EM data to assume GW frequency is locked to
(twice) EM frequency
o Directed search: (Cas A, Sco X-1) search over some
parameters, e.g. inclination & frequency

derivatives
o  All Sky (blind) search: Search over all possible sky

locations and orientations

e Computationally limited. High-cost analyses use
volunteer computing: Einstein@home (c.f., SETI@home)

Strain Sensitivity
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Astrophysical inference on
binary black holes

LIGO Hanford

N
=
>
9
c
]
>
o
L
L=

(i

LIGO Livingston

0.7 0.8
Time (sec)




parameter estimation
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parameter estimation
d(t) = h(X;t) + n(t)

X = (m1, ma, S, Ss, ra, dec, t.0.a, dist, )
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Parameter estimation

e Toolbox:
o Markov Chain Monte Carlo (MCMC) to stochastically sample the posterior
over parameter space
m enhanced with parallel tempering & kernel density estimation to
explore multi-modal distributions
m highly tuned jump proposals
m optimized model order reduction strategies to accelerate
computer/supercomputer simulations and inference
o Nested sampling (model selection)
e Can be highly computationally intensive for long-duration signals/best models.
o ROM, ensemble sampling



Looking forward

® Era of GW astronomy has just begun.

e Study population of compact binaries
e Tests of gravity/spacetime
o Extra GW polarizations from CWs?
® Multi-messenger astronomy
o EM partners joining with GW efforts to locate counterparts to LIGO events
e New detectors in India (LIGO India) and Japan (KAGRA)

e Many HPC, analysis and modeling challenges!



