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Project Goal: Advance Industrial CT Segmentation and
Feature Detection Through Coupled Algorithms

= Non-Destructive Evaluation is central to many mission critical areas
WCI NIF -GS

Stockpile Nuclear Hohlraum Material Transportation
Stewardship Fuel Target Characterization Security

= The goalis to identify objects, materials, and/or features in a noisy,
cluttered, and compromised environment

= The traditional pipeline of reconstruction, segmentation, detection
is well established but inflexible and often inadequate
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Image Segmentation Algorithms Can be Sub-Optimal Even
with Exact Inference

Optimization Estimation Approximation
Error Error Error
Algorithm Finite Training Model Inadequacy

Onmal Image Ground Truth Sol #1 (MAP

All Segmentation Algorithms Produce the Maximum A
Posteriori (MAP) Solution for a given set of parameters
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Ensemble-based Approaches Can Alleviate Some
Shortcomings of Segmentation Algorithms

Orllnal Image Ground Truth Sol #1 (MAP

Multiple Hypotheses using a Sequential Forward Selection Strategy

= Better exploration of the solution space - Most Probable Vs. Diverse
Hypotheses

= Hypotheses re-ranking using “Discriminative Features”

= Can be more robust to noise and artifacts than the MAP solution
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Picking a Base Model and the Required Amount of
Diversity is Very Challenging
= Industrial CT Images contain severe metal artifacts in form of

streaks, blooming, or cupping

= Virtually all segmentation strategies rely on features (values, shape,
etc.) to define segments (e.g. Region growing)

= We propose to use a simple greedy bottom-up simplification to
generate the MAP solution

Solution diversity can be
controlled using the
Simplification Order .\,
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Create Ensemble of Randomized Hierarchies to Explore the
Space of Potentially Useful Segmentations

= Randomized simplification order to account for inevitable mistakes

AAA. A

= Instead of picking the “best” hypothesis choose “best” segments
« Labeled training data (as done by existing security systems)

= Fuse information from selected segments using consensus
segmentations

= Highly flexible approach to address segmentation and related
challenges by easily integrating semantic information
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Problem: Improved Segmentation of Airport Luggage Into
Multiple Threat Classes

l& Lawrence Livermore National Laboratory

Task: Find and classify multiple threats and pseudo-threatsin a
collection of bags provided by the ALERT Center of Excellence
Data: ~200 scans containing:

« Background: clothes, water, books, etc.

« Threats: Saline solution, modeling clay, rubber sheets

« Pseudo-threats: threat materials in small quantities

Challenge:

« Poor reconstruction leading to difficult segmentation and poor detection

Solution:

« Improve segmentation of threat objects using labeled training data




Step 1: Build Multiple Segmentation Hypotheses

= Construct multiple hierarchical segmentations by randomizing the
merge order
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= Amount of randomness balances the required number of hierarchies
and the amount of diversity
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Step 2: Select Candidate Segments using Discriminative
Features
= Build discriminative features for all

segments in a hierarchy based on
intensity and shape characteristics

* Intensity histogram, shape
histogram, surface-to-volume ratio,

area
» Local Discriminant Embedding with inter-class
supervised data can effectively infer Tr[VIXTL'XV]
the underlying manifold m\E}X Tr[VTXTLXV]
intra-class
= We adopt a reference-based | x? distance
classification scheme to determine V" "omPlete - ( k d(r.gf ))
the segment labels S(r,gf)=1- 27 2
Z r'(3)
gamma
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Step 3: Consensus Inference using GraphCuts
= |dentify top-ranked segments for each object, and obtain per-object
“best” segmentation using consensus inference

= We formulate a graphcut optimization to obtain the final
segmentation

Unary Pairwise
Potential Potential
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Step 3: Consensus Inference using GraphCuts
= |dentify top-ranked segments for each object, and obtain per-object
“best” segmentation using consensus inference

= We formulate a graphcut optimization to obtain the final
segmentation

Unary Pairwise

Potential Potential
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Significantly improves the segmentation performance by:

« Compensating for reconstruction artifacts through randomization
» Allowing detection on a wide range of levels in the hierarchies
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Ensemble Segmentations Out-Perform Existing Techniques
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Ensemble Segmentations Out-Perform Existing Techniques

Ground Truth Our Approach
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Ground Truth
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Ensemble Segmentations Out-Perform Existing Techniques
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Hand-Tuned
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Ensemble Segmentations Out-Perform Existing Techniques
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Ensemble Segmentations Out-Perform Existing Techniques
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Summary

(=

Independent of the specific low or high level features — Promising
results on natural images and CT volumes

Using appropriate strategies for creating diverse hypotheses, even a
simple base model is sufficient to build an effective ensemble

Highly robust against noise and artifacts — Worst-case behavior is
significantly superior to hand-tuned approaches

Presents opportunities to integrate semantic knowledge, i.e., to
bridge the gap between segmentation and detection
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