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What is Texture? 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
4 

What is Texture? 

 “An image of visual texture is spatially homogeneous and typically 
contains repeated structures, often with some random variation, 
e.g., random positions, orientations or colors.” [Portilla & Simoncelli] 
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Texture Similarity 
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Material Identification 
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Material Identification 
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Texture Similarity and Identification 

Applications 

 Content-Based Indexing and Retrieval 
 

 Compression 
 
 
 

 Visual to tactile conversion 
 Semantic Information Extraction 
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Texture Similarity and Identification 

Applications 

 Content-Based Indexing and Retrieval 
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Texture Similarity and Identification 

Applications 

 Content-Based Indexing and Retrieval 
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 Visual to tactile conversion 
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Texture Similarity and Identification 

Applications 

 Content-Based Indexing and Retrieval 
• Retrieval of similar textures 

 Compression 
• Perceptually lossless 
• Structurally lossless 
• Perceptually lossy 

 Visual to tactile conversion 
 Semantic Information Extraction 

• Computer vision: Focus on objects     
rather than material perception and texture 
[Adelson, HVEI’01] 
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Restoration Based on Nonlocal Self-Similarity 

Dabov, Foi, Katkovnik, Egiazarian, “Image denoising by sparse 3D 
transform-domain collaborative filtering”, IEEE T-IP, 2007 

Create groups of similar patches associated with a given “reference” block 
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Microvascular Image Classification 

Control Mucosa Images – Sarah Ruderman 
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Microvascular Image Classification 

Tumor Vasculature Images – Sarah Ruderman 
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Feature Vector Distance (FVD) Matrix 

The darker the more similar  
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Subjective vs. Objective Texture Similarity 

11.3 9.0 8.2 

1 9 10 

PSNR 

Subjective 
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Subjective vs. Objective Texture Similarity 

0.83 0.96 0.98 

1 9 10 

STSIM-2 global 

Subjective 
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Texture Similarity – PSNR? 

8.2 17.4 17.5 10.4 
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Texture Similarity – STSIM-2 global 

0.98 0.99 0.83 0.96 
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Separating Grayscale and Color 

 Different subjects put different emphasis on structure and 
color composition for texture similarity 

 Separate metrics for grayscale and color [Zujovic, ICIP’09] 
• Use grayscale component to isolate/approximate structure 
• Structure in chrominance?  
• End user/application decides how to combine 

 Can develop more effective metrics separately  
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SSIMs – Grayscale 

 Compare local 

image statistics 

 Point-by-point 

Based on papers by Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
24 

CW-SSIM (Perceptually-Weighted) 
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Perceptual Quality Metrics 
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SSIMs – Grayscale 

 Compare local 

image statistics 

 Point-by-point 

Based on papers by Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli 
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 No point-by-point comparisons 

– Drop structure term 

 Local image statistics 

– Mean and variance 

– First order correlation coefficients 

– Crossband correlations 

 Texture synthesis [Portilla&Simoncelli’00] 

 

Structural Texture Similarity Metrics 

Grayscale 

J. Zujovic, T.N. Pappas, D.N. Neuhoff, T-IP’13 
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Portilla and Simoncelli’00 

 Universal parametric statistical model 
 Necessary and sufficient parameters 
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STSIM-2: Subband Statistics 

 To compare images      and     : 
 For each subband        and          find: 
 Means              and standard deviations 
 Horizontal autocorrelations 

 
 
 

 Vertical autocorrelations  
 Crossband correlations 

J. Zujovic, T.N. Pappas, D.N. Neuhoff, T-IP’13 
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STSIM-2: Crossband Correlations 
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STSIM-2: Comparing Statistics 

J. Zujovic, T.N. Pappas, D.N. Neuhoff, T-IP’13 
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STSIM-2: Pooling 

J. Zujovic, T.N. Pappas, D.N. Neuhoff, T-IP’13 
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 For each image, form feature vector consisting of all statistics for all 
subbands, including cross-correlations: 

  FX  =  (f1,x, f2,x, …, fM,x) ,    FY  =  (f1,y, f2,y, …, fM,y),    M = 82  

 Compute Mahalonobis distance 
 
 
 

 where         is the (overall or intra-class) variance of  i th  statistic 
across all images in the database. 

 
 

STSIM: Mahalanobis distance 

   

QSTSIM-M (x,y) =
( f ix - f iy )2

s fi

2

i=1

M

å = fx
T
M fy

2
if

J. Zujovic, T.N. Pappas, D.N. Neuhoff, T-IP’13 

M. Maggioni, G. Jin, A. Foi, T.N. Pappas, ICIP’14 
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Local versus Global 
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 Traditional methods 
• Raw color histogram comparisons 

 Our approach 
• Remove unnecessary color detail 

— Extract dominant colors 
— Using adaptive clustering [Pappas’92] 

• Use more sophisticated distance metric 
— EMD [Rubner’00], OCCD [Mojsilovic’02] 

• Use “perceptually uniform” color space (L*a*b*) 

Color Composition Similarity 

Zujovic, Pappas, Neuhoff, ICIP’09 
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Color Composition Similarity 

Original images 
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Color Composition Similarity 

 

ACA Local Averages 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
40 

Color Composition Similarity 

ACA Local Averages 
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Color Composition Similarity 

ACA Local Averages 
plus K-means 
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 Minimum cost graph matching problem 
 Quantize percentages of colors into “units” 
 Example: 5% units = 20 units total 

Optimal Color Composition Distance 

Image x 

Image y 
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Texture Similarity Metric Evaluation 

Poor agreement among subjects (ICC = 0.66) – Rank correlation? 
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Testing Domains for Texture Similarity 

monotonic distortion identical 
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Testing Domains for Texture Similarity 

dissimilar similar identical 
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Testing Domains for Texture Similarity 

 Limitations/Capabilities of Human Perception 
 Application Requirements 
 Testing Domains 

• Quantify (perceptually) small amounts of distortion 
• Similar vs. dissimilar 
• Retrieval of “identical” textures 

 Absolute scale/threshold?  
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Desired Texture Similarity Metric 
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Color Analogy: MacAdam Ellipses 

 Color: 
• JNDs 
• Cannot quantify large 

perceptual distances 
 Texture:  

• JNDs can be obtained 
by existing perceptual 
quality metrics (solid) 

• “Ellipses” of similar 
textures (dashed) 

• “Ellipses” of identical 
textures (dotted) 
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Testing Domains for Texture Similarity 

 Different domains require 
• Different metric evaluation criteria 
• Different subjective and objective tests 
• Different texture similarity metrics? 

 Retrieval of “identical” textures 
• Known-item search  

 Similar vs. dissimilar textures 
 Quantify (perceptually) small amounts of 

distortion 
J. Zujovic, T.N. Pappas, D.N. Neuhoff, H. de Ridder, R. van Egmond JOSAA’15 
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Building The Database 
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Precision at One 

 Measures how many times the first retrieved texture 
was the correct one 
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Mean Reciprocal Rank (MRR) 

 Measures the average inverse rank of the first correct 
retrieved image 

…   RR = 1 

…   RR = 1 

…   RR = 0.33 
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Mean Average Precision (MAP) 

 Measures average precision when cutoff is made at 
1st, 2nd,…, Nth retrieved image 

precision=1 
precision=0.5 

precision=0.66 

precision=0.5 

… 

AP = 0.5*(1*1 + 0.5*0 + 0.66*1 + 0.5*0 + …) = 0.83   

two relevant documents in database 

precision after first retrieved document 

indicator that document was relevant 
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Information Retrieval Statistics 

Precision at one Mean Reciprocal Rank Mean Average Precision
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Statistical Validation 

 P@1: Cochrane’s Q test 
– Applied to each pair of metrics to determine statistical significance 
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Receiver Operating Characteristic – 

ROC 
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Receiver Operating Characteristic – 

ROC 
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Receiver Operating Characteristic – 

ROC 
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Testing Domains for Texture Similarity 

 Different domains require 
• Different metric evaluation criteria 
• Different subjective and objective tests 
• Different texture similarity metrics? 

 Retrieval of “identical” textures 
• Known-item search  

 Similar vs. dissimilar textures 
 Quantify (perceptually) small amounts of 

distortion 
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 Goal: find clusters of similar textures 
• Similar within clusters 
• Dissimilar across clusters 

 Relatively large database 
• Difficult to see and compare all images at once 

 ViSiProG: Visual Similarity by Progressive Grouping 
• Build similarity groups one at a time 
• Build each group in a step-by-step fashion 
• Each user builds multiple clusters 
• Combine results from different users  

Finding Clusters of Similar Textures 

Zujovic, Pappas, Neuhoff, de Ridder, van Egmond, JOSAA’15 
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ViSiProG – Grayscale 
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ViSiProG – Grayscale 
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ViSiProG – Grayscale 
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ViSiProG – Grayscale 
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ViSiProG – Grayscale 
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ViSiProG – Grayscale 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
69 

 246 grayscale images  
 Subjects asked to form groups of 9 similar images 
 Formed similarity matrix 

• Only 134 images were selected in a group 
 Used spectral clustering to analyze results 

• Cluster the data based on human similarity scores 

Finding Clusters of Similar Textures 
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Similarity Clusters Examples 
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Information Retrieval Statistics 
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ViSiProG – Color Composition 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
74 

Similarity Clusters Examples 
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Testing Domains for Texture Similarity 

 Different domains require 
• Different metric evaluation criteria 
• Different subjective and objective tests 
• Different texture similarity metrics? 

 Retrieval of “identical” textures 
• Known-item search  

 Similar vs. dissimilar textures 
 Quantify (perceptually) small amounts of 

distortion 
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Distortion Quantification 

 Subjects asked to rank the distortions from “best” to “worst” 

 

Original 

Low Medium High 

Rotations 

Shifts 

Warps 
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Original Database 
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Analyzing the Results 

 Subjective similarity scores: 
• Average ranks (Borda’s rule) 
• Thurstonian scaling 
• Multidimensional scaling 
 

 Qualitatively similar results 
 

 Correlate with objective (metric) scores 

78 
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Analyzing the Results 
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Material Properties 

 Texture appearance depends on 
• Material (reflectance, transmittance) 
• Surface geometry 
• Lighting (color, direction, …) 
• Viewing angle 

 Difficult to separate 
• “Inverse Optics” approach 
• Computationally intensive 

 Rely on natural texture statistics 
• Ecological approach 
• Fast 
• Works most of the time, but … 
• Can make errors (illusions) 
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Material Properties 

 Rely on natural image statistics to 
estimate specific attributes 
• Roughness 
• Glossiness 
• Directionality 
• Regularity 
• Scale 

 Can be estimated/compared outside 
quantitative range of STSIMs 

 Provide strong clues about material 
properties 
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Material Properties 

 Texture appearance depends on 
material, surface geometry, and 
lighting 

 Difficult to separate 
 Rely on image statistics to estimate 

specific attributes 
• Roughness 
• Glossiness 
• Directionality 
• Regularity 
• Scale 

 Can be estimated/compared outside 
quantitative range of STSIMs 

 Provide strong clues about material 
properties 
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Manipulation on Statistics 

Input 

Texture 

Statistical 

analysis 

Statistics 

manipulation 

Gloss 

manipulation 

Negative 
skewness 

Positive 
skewness 

Example: Skewness hypothesis (Motoyoshi et al., 2007)  

Example: λ-curve transformation (Wijntjes & Pont, 2010) 
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𝑌 =
𝑋

𝑋2 + 𝜆(1 − 𝑋2)
 

Input, output values 

Stretch degree in relief 

depth 

Stretches a Lambertian surface in depth; 
affects skewness of the luminance histogram 

Lambertian surface 

λ-curve Transformation 
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𝑌 =
𝑋

𝑋2 + 𝜆(1 − 𝑋2)
 

Input, output values 

Stretch degree in relief 

depth 

Stretches a Lambertian surface in depth; 
affects skewness of the luminance histogram 

Natural surface 

Glossier? 

λ-curve Transformation 
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Manipulation on Image Cues 

Input 

Texture 

Gloss 

manipulation 

Image cue 

manipulation 

Image cues: specular coverage, specular contrast, specular sharpness 

Alternative approach (Marlow and Anderson, 2013):  

specular coverage specular contrast specular sharpness 

Synthetic images: 
hard to do on 
natural textures  
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Motivation 

Even though we have multiple gloss related attributes: 

manipulation of gloss is constrained by surface 
geometry and illumination direction 
it is difficult to control these attributes at the perceptual 
level 

Goal 

Transformation method to manipulate visual gloss of natural textures  
Without constraints on surface geometry and illumination conditions 
Investigate the relation between perceived gloss and perceived 
contrast  
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Method 

Subband 

Decompositio

n 

Subband S-

curve 

Transformatio

n 

Output 

Image 
Original 

Image 

Subjective experiments 

Test the relation between perceived gloss and perceived 
contrast as you apply the S-curve transformation 
Test whether contrast adjustment could compensate for the 
gloss difference generated by illumination directions 
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Stimuli 

Collection of natural and synthetic textures (256x256) 
Corbis website (natural, color) 
Pictures of black and white spaghetti  (natural, color) 
CUReT texture database (natural, color and grayscale) 

- Illumination: 0.196 radians and 0.589 radians in polar angle 
Synthesized Lambertian surfaces: Rendered Brownian surfaces 
(grayscale) 

- Illumination: 0 and 50 degrees in polar angle 
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Examples 

0.196 radians 0.589radians 

CUReT 

Lambertian 

0 degrees 50 degrees 
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Image decomposition 

1 
cycles/pic 

2 cycles/pic 4 cycles/pic 8 cycles/pic 

16 
cycles/pic 

32 
cycles/pic 

64 
cycles/pic 

128 cycles/pic 

original 
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S-curve Transformation 

𝑌 = 𝜇 −
𝜇 − 𝑋

𝛼2 𝜇 − 𝑋 2 1 − 1/𝑠2 + 1/𝑠2
 

Input value, output value 

Mean of input values 

s 

 S-curve with different 𝑠 
values 

𝑠 is the sole control parameter controlling the transformation 
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Haun & Peli, 2013: 
How do different spatial frequencies contribute to the overall perceived contrast? 
Weighting scheme for overall perceptual effect on contrast: Spatial frequencies 
around the peak of CSF (1-6 cycles/degree) contribute most to contrast 
perception, low and high frequency bands contribute less. 

Perceived Contrast Weighting Scheme 

.1      .3      .5       1       2        4       8       16 
Spatial frequency(cycles/degree) 

Decision weight 

Apply the S-curve transformation  
with slope S to all frequency bands,  
except the low and high bands 
 
For low and high bands: 
Use slope 2 S when S > 1 
Use slope .5 S when S < 1 
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Lambertian 

CUReT-028 

Pasta 

S-curve Transformed Images 

S = 0.25 S = 2 original S = 0.5 S = 4 
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λ = 0.25 λ = 2 original λ = 0.5 λ = 4 

Lambertian 

CUReT-028 

Pasta 

λ-curve Transformed Images 
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Graphical User Interface: Experiment I  

Session 1: Arrange images in order of decreasing gloss 
Session 2: Arrange images in order of decreasing contrast 

Each trial: Original and six S-curve or λ-curve transformed images in 
random order 
(Use one transformation, S or λ, in each trial) 
Random order of curves, random order of images  
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CorrelationRelation between Perceived Gloss and 
Contrast 

Pearson Correlation 20 subjects 

• Strong positive correlation between perceived contrast and slope of S-curve 

Correlation between S-Curve and Perceived 

Contrast 
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Pearson Correlation 

• Positive correlation between perceived gloss and slope of S-curve 
• But larger variation than contrast 
• Perceived contrast and perceived gloss are closely related 
• Do people respond to systematic changes rather than gloss or contrast? 

Correlation between S-Curve and 

Perceived Gloss 

20 subjects 
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Relation between Perceived Gloss and Perceived 

Contrast 

Average rankings between contrast and gloss in s-curve transformation 

• Within the S-curve transformation, perceived gloss is positively correlated with 
perceived contrast across different types of textures. 
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Pearson Correlation 

• Very little correlation between perceived contrast and slope of λ-curve 
• Except for synthetic Lambertian surfaces 

Correlation between λ-curve and Perceived 

Contrast 

20 subjects 
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• Very little correlation between perceived contrast and slope of λ-
curve 

• Except for synthetic Lambertian surfaces 
• Controlling histogram skewness, the λ-curve is not sufficient to 

manipulate the perceived gloss of natural textures 

Correlation between λ-curve and Perceived 

Gloss 

Pearson Correlation 20 subjects 
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Gloss matching: Pairwise comparison 
Each trial: one original image in oblique illumination direction and  
  one S-curve transformed version in near-frontal illumination 

Graphical User Interface: Experiment  II 
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Probability that frontal illuminated texture was selected as 

glossier 

Experimental Results 

CUReT_35 
CUReT_10 
Lambertian_09 
Lambertian_11 

CUReT_28 
CUReT_53 
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Conclusions 

 

We proposed a novel transformation method to manipulate the perceived 
gloss of natural textures with unknown geometry and illumination field. 

 

Natural textures behave differently than synthesized Lambertian surfaces. 
 

There is a strong positive correlation between perceived gloss and 
perceived contrast across different types of images including Lambertian 
surface.  

 

Contrast modification could compensate for gloss difference generated due 
illumination directions, within a certain range of directions 
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Material Properties 

 Texture appearance depends on 
material, surface geometry, and 
lighting 

 Difficult to separate 
 Rely on image statistics to estimate 

specific attributes 
• Roughness 
• Glossiness 
• Directionality 
• Regularity 
• Scale 

 Can be estimated/compared outside 
quantitative range of STSIMs 

 Provide strong clues about material 
properties 
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Questions? 

Thank you! 

107 




