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 Data: Large corpora of images & associated metadata that includes free text (open source) 

 Problem: Given a multimedia corpus, can we create a joint vector space between multimodal 
elements? 

• Constraint 1: Unstructured text of any length, language, or relevance 

• Constraint 2: Minimal training guidance and minimal tuning 

 Challenge: Very messy, lots of noise, heterogeneous, and sometimes irrelevant tags 

   2 

?? 

Images/Multimedia Metadata 

Vector Space 



Lawrence Livermore National Laboratory 

 Goal: Create a vector space to where multimodal 
elements can be mapped  

 Advantages: 
• Similarities, distances, and differences between a diverse set of 

media make sense. For example: 
— Words to other Words:  

grammatical & contextual  

— Images to other images 

— Words to Images 

— Images to Words 

• Euclidean operations have meaning 
over diverse domain. For example: 
— Analogies:  

King is to queen as man is to woman 

— V(“Woman”) = V(“King”) –V(“Queen”) + V(“Man”) 
 

— V( “Woman”) ≈ V(              ) – V(              ) + V(“Man”) 
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 Supervised Neural Network, Targeted Training [Krizhevsky et al, ‘12] 
• Supervised deep learning architecture 

• ILSVRC classification Task: 1ooo “synset” classes, 150k images 

• YFCC 100M have no labels, but intermediate layers are useful 

 Word2Vec multithreaded structure [ Mikolov et al, NIPS, ‘13] 
• Distributed representation of semantics information 

• Not multi-modal, but it is extendable (codebase) 

 CaffeNET [Y. Jia et al, ’13] 
• Necessary for large-scale feature extraction and back propagation 

• Final layers need to be implemented 

 Dual autoencoders with association labels [Vincent et al, ‘10, Feng ’14] 
• Unsupervised cross-modal structure with autoencoders 

• Unprincipled and poor performance, especially at large scale. 

• Dimensionality is too large in both image and word space 

• However, it does offer a nonlinear solution for a highly complex solution 
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 ImageNET Competition (ILSVRC 2012) : 1000 Classes 

 AlexNET Architecture: 

 

 

 

 

 

 Final softmax layer, learning posteriors: 

 

 

 Base structure is useful, but final  
layer is unsuitable for unstructured  
text at large scale 

• Manually intensive training 

• Inflexible targeted single labels 

• Concurrent definitions unsupported 

• Large dimensionality of vocabulary 

• Not “concept” driven 
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User description: 
my black camaro 

User description: 
dat racing machine 

00024a73d1a4c32fb29732d56a2: 
Red Noel christmas electric signs noel 
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 Unstructured text is extremely noisy & varied 
 

 

 

 

 

 

 

 Neural approaches are state of the art and perform surprisingly well [Baroni, ‘14] 

 Mikolov et al: skip-gram distributed modeling 
 
 
• Semantic-based vector representation of words 

• Context-based: taking a window around a word 

 Solving the multiple label problem: 
• Robust to noisy metadata associated with imagery 

• Extendable a large corpus of “clean data” 

• Relate images to concepts (context) rather than labels 
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 Trained network places images and semantics in the same vector space 

 Improvements: tune the network to use the negative gradient to back 
propagate 

Future 
Backprop 
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 Define the following vectors: 

• vw : word vectors (vw ∈ R
200), vf: image feature ( vf  ∈ R

4096) 

• vo: output vector (vo ∈ R
200), vp: positive sample ( vp∈ R

200) , vn: negative sample (vn ∈ R
200) 

 Mikolov et al., noise contrast estimation 

 

 

 Added term to deal with related images: 

 

 

 Gradient update: 

 

 

 

 

 Weighting matrix is the final layer of network 
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 Joint optimization over vw, vo, and W 
• Mikolov does this with SGD over  

• Substitute vp with vo for joint training 

• The vocabulary is roughly 15% larger than necessary 
(meaningless and infrequent words / emoticons) 

 

 Pre-training and vocabulary pruning 
• Lots of noise and unicode characters 

• Clean datasets: NY Times (20 years), Wikipedia (1st 9 billion characters) 

• If vo ≠ vp (i.e., joint training is not necessary) 
— Optimize word space first, then optimize W matrix 

— Better if we use a “clean” dataset first, and then optimize over the images based on 
the context that it sees. 
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 YFCC100M Offers Opportunity to Learn Semantic Space for Images, 
Videos, and Text 

 One of the Largest Publicly Available Multimedia Datasets 
• 99.3 million images, 0.7 million videos  

• Metadata includes: description, camera type, gps location, tags, user 

 Collaboration with ICSI Berkeley, Yahoo!, Amazon, and LLNL 

 LLNL’s Video Analytics LDRD provided speech and video features for the 
geo-location task in MediaEval2014, and ACM competition at ACM 2015 
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 Query “Red”, Metadata+NYTimes, Metadata Only 

 

 

 

 Query “k9”, Metadata+NYTimes, Metadata Only 
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 Multimodal vector space 

• Deep learning to understand image space 

• Final layer replacement with semantic methodologies 

• Promising results 

— Wikipedia Dataset 

— YFCC100M Dataset 

 Future Work 

• Integration with UC Berkeley’s Caffe 

• Use a better learner (e.g., GoogleNet) 

• Full back-propagation for final layer 

• Additional layers to be added for more complexity 
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