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LLNL efforts in this area aimed at modeling and qualification of SLM, 
process monitoring, and improved model validation  
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Adapted from “Knowledge Based Process Planning and Design for Additive Layer 
Manufacturing” KARMA project (2011) 
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Experimentally probing the laser melting process in situ can 

yield insight to these multiple physical effects 
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Model-driven experimentation is sought to minimize 
defects which can limit AM performance 
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 Demonstrate high speed, microscopic technique to directly 
probe heating, melting and wetting of metal powders used 
in SLM 

• Extend to higher effective scan rates, higher powers & higher frame 
rates 

 Compare to simulations to improve understanding of SLM 
process, validate models  
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 Use high frame-rate CMOS camera 
microscopy to image single layer, 
metal particle bed melting under 
varying laser and environmental 
conditions 

 Use self-illumination 
incandescence from heated 
particle to characterize melt pool 
dimensions, particle/splash 
ejection 

 Compare thermal emission history 
with final material deposition 
morphologies  
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Experimental setup 
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Raw 8-bit image  
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Initial and final morphology of laser-induced melting 
of sparse 316L layer 

Pre-shot 

Post-shot 

5~50 W of 10.6 mm light into 200 mm (1/e2), t=50 ms  

50 um 

50 um 

Approximate position of laser beam 

Particle imaged in next slides 
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Thermo-isolated heating time:  
𝛼𝜋𝑅𝐼𝜏 = 4/3𝜋𝑅3𝜌𝐶𝑇𝑚 

tHc ~ 4/3RCTm/I ~ 0.75 ms 

Thermal conduction time: 
 tc~R2/D , D-0.04 cm2/sec 
for R=15 µm steel particles: 
   tc=56 µs 
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Measured particle dynamics captures 
expansion, melting & wetting 

t=0 ms t=100 ms 

t=200 ms t=400 ms 

Particle join 
event 

Wetting/flow 

Thermal 
expansion 

~4 ms delay observed between melting and wetting 
indicates highly non-uniform heat distribution 
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 Apparent lack of wetting 

 Fluid wave speeds ~10-17 m/s 

 Droplet ejection at 12.6 m/s 

100 mm 100 mm 

before after 
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425 mm 

Evaporation-driven recoil 
momentum shapes melt 
track, ejects material ALE3D simulation 
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• Velocity increases with laser power due to increased recoil pressure 
• Droplet size did not vary appreciably with laser power 

1 mm 
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• Oxidation leads to increased heating, pressure 
• Droplet size not affected by oxidation (~70mm, not shown) 

150W, 1200 mm/s 

1 mm 



Lawrence Livermore National Laboratory 16 

50W  100W 150W 

500 mm/s 

1200 mm/s 

“keyholing” 
6

50
m

m
 

EMISSION HEIGHT 



Lawrence Livermore National Laboratory 

 An imaging test bench to monitor dynamic of laser-induced 
melting of stainless steel powders using high frame rate (up to 1 
MHz) imaging was demonstrated 

 Keyholing from evaporation-driven recoil pressure was observed 
at high laser power, with a threshold in agreement with reported 
predictions  

 Delayed/frustrated wetting was observed, which could lead to 
large fluctuations and instability in droplet diameters 

 Ejection velocities for typical SLM deposition conditions were on 
the order of 3-7 m/s, increasing with laser power and oxygen 
content 

 Future work will include pulsed laser illumination and full 3D build 
temperature monitoring 
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Courtesy of Wayne King 
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Interface 
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2-25 ms <1 ms 3-30 ms 
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Absorptivity for polished stainless steel  at l=10.6 µm is ~0.1  

For the underlying substrate, with thermal conductivity the value near the 
melting point is k=36 W/m.K  T~112 C (won’t melt substrate!) 

Thermal conduction time:  tc~R2/D , D-0.04 cm2/sec for SS, R=15 µm 
    tc=56 µs 

Thermo-isolated heating time: 𝛼𝜋𝑅𝐼𝜏 = 4/3𝜋𝑅3𝜌𝐶𝑇𝑚 

    tHc ~ 4/3RCTm/I ~ 0.75 ms 

  However, finite element simulations of a particle in 
  thermal contact with the substrate, tHc<20 ms 

Wetting time: Laplace pressure + Bernoulli Eq.  1-10 ms 
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