Bayesian Sampling for Error Estimation in Image Reconstruction of X-Ray Radiographs

Marylesa Howard
Scientist (Mathematician)
National Security Technologies, LLC
Defense Experimentation and Stockpile Stewardship

Joint work with Aaron Luttmanna, Michael Fowlerb, Stephen Mitchella, and Margaret Hockc.

a National Security Technologies, LLC, b Mathworks, Inc., c Columbia University

This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy and supported by the Site Directed Research and Development Program.
Nevada National Security Site
Managed and Operated by National Security Technologies, LLC (NSTec)

The Nevada National Security Site has a long history with different responsibilities over time:

- Atmospheric testing of nuclear weapons (1951–1962)
- Underground nuclear weapons testing (1962–1992)
- Weapons systems experiments (still today)
- Science-base stewardship of nuclear weapons – “Stockpile Stewardship” (still today)

Priscilla, a 37 kiloton balloon test.

The Nevada National Security Site.

Photos courtesy of National Nuclear Security Administration / Nevada Field Office
Abel Inversion – The Problem

Assuming a cylindrically symmetric object, volumetric density is computed by

1. converting the radiograph of intensities to areal density,
2. and applying Abel inversion to convert areal density to volumetric density.
Abel Inversion – The Deterministic & Stochastic Models

Given radially symmetric density function $x(r)$, the **Abel transform** is given by

$$ b := A(x)(y) = 2 \int_y^R \frac{r \, x(r)}{\sqrt{r^2 - y^2}} \, dr, $$

where R is the maximum radius of the object and $A(x)(y)$ is the areal density of the object.
Abel Inversion – The Deterministic & Stochastic Models

Given radially symmetric density function $x(r)$, the Abel transform is given by

$$b := A(x)(y) = 2 \int_y^R \frac{r x(r)}{\sqrt{r^2 - y^2}} \, dr,$$

where R is the maximum radius of the object and $A(x)(y)$ is the areal density of the object.

The discretized, stochastic linear inverse problem is given by

$$b = Ax + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \lambda^{-1}I).$$

areal densities

“true” volumetric density signal

discretized Abel operator

precision parameter
Abel Inversion – Hierarchical Bayesian Sampling

Assumed Distributions

- **Likelihood**: \(b \sim \mathcal{N}(Ax, \lambda^{-1}I) \)
- **Prior**: \(x \sim \mathcal{N}(0, (\delta L)^{-1}) \)
- **Hyperprior**: \(\lambda \sim \Gamma(\alpha, \beta) \)
- **Hyperprior**: \(\delta \sim \Gamma(\theta, \phi) \)
- **Hyperprior**: \(L \sim \text{Wishart}(V, \nu) \)

- Parameters \(\alpha \) and \(\beta \) “replace” the unknown noise precision, \(\lambda \), and tend to be somewhat insensitive.

- Parameters \(\theta \) and \(\phi \) tend to be less sensitive than the parameter they are “replacing”, \(\delta \), which acts as a regularization parameter in the corresponding maximum likelihood estimate.

- We take \(\nu = n \) and \(V \) to be the linearized semi-norm of the total variation regularization solution, which acts to **preserve edges** in this paradigm.
Abel Inversion – The Posterior

Joint Posterior:

\[p(x, \lambda, \delta, L|b) = \frac{\lambda^{n/2+\alpha-1} \delta^{n/2+\theta-1} \beta \alpha \phi \theta 2^{-\nu/2} |V|^{-\nu/2} |L|^{\nu-n} \Gamma(n(\nu/2))^{-1}}{2\pi^{n} \Gamma(\alpha) \Gamma(\theta)} \times \exp \left(-\beta \lambda - \phi \delta - \frac{1}{2} \left(\lambda ||b - Ax||^2 + \delta x' L x + \text{tr}(V^{-1/2} L) \right) \right) \]

Conditional distributions:

\[x|\lambda, \delta, L, b \sim \mathcal{N} \left(\lambda(\delta L + \lambda A' A)^{-1} A' b, (\delta L + \lambda A' A)^{-1} \right) \]

\[\lambda|x, \delta, L, b \sim \Gamma \left(\alpha + n/2, \beta + \frac{1}{2} ||b - Ax||^2 \right) \]

\[\delta|x, \lambda, L, b \sim \Gamma \left(\theta + n/2, \phi + \frac{1}{2} x'L x \right) \]

\[L|x, \lambda, \delta, b \sim \text{Wishart} \left((V^{-1} + \delta xx')^{-1}, \nu + 1 \right) \]

Samples from conditional posteriors are computed using a **Gibbs sampler**. **Sample mean** and **sample standard deviation** characterize the posterior.
Abel Inversion – Results from Synthetic Data
Abel Inversion – Real Data from the NNSS
Abel Inversion – Real Data from the NNSS

TV Reconstruction

MCMC Reconstruction
Abel Inversion – Radiation Transport Simulations

- True Density Profile

Direct Radiation Only

Direct + Scattered Radiation
Abel Inversion – Radiation Transport Simulations

Direct Radiation Only

- TV Reconstruction
- True Density Profile

Direct + Scattered Radiation

- TV Reconstruction
- True Density Profile
Abel Inversion – Radiation Transport Simulations

Direct Radiation Only

Direct + Scattered Radiation
Abel Inversion – Results from Synthetic Data

Characterizing **Stationarity** of the MCMC Chain

Delta Time Series

Lambda Time Series

Signal Times Series (90th element)
Abel Inversion – Radiation Transport Simulations

Characterizing stationarity of the MCMC chain: Direct Radiation Only

[Graphs showing Delta Time Series, Lambda Time Series, and Signal Time Series (90th element)]
Abel Inversion – Radiation Transport Simulations

Characterizing stationarity of the MCMC chain: Direct + Scattered Radiation