A Practical Strategy for Spectral Library Partitioning and Least-Squares Identification

CASIS 2015

Shawn Higbee, PhD

LLNL-PRES-670528

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Motivation

- This problem has no name:
 - En-masse use of least squares (LS) methods
 - Continuous arrival of large volumes of data
 - Results that need human interpretation
 - Highly correlated physical processes
 - Rank deficient spectral libraries
 - "standard" strategies aren't helpful
 - Quantitative methods end up being surprisingly subjective

324 spectra from ASTER Library Condition number = 4.8e4

Goal: provide a practical strategy for navigating this situation

"Ordinary" Least Squares

- $Y = XB + \epsilon$
- $B_{hat} = (X'X)^{-1}X'Y$
- $Cov(B_{hat}) = \sigma^2 (X'X)^{-1}$
- Most physical scientists pre-occupy with σ^2 and not $(X'X)^{-1}$
- Some useful tools in LS
 - SVD(A) = UWV'
 - $cond(A) \equiv \frac{\lambda_n}{\lambda_1}$
 - $VIF = diag(Cor(X)^{-1})$
- Fundament accuracy limit of LS: $cond(X) = 10^c \rightarrow accuracy(B_{hat}) \approx r c$

A spectral library's properties can dominate uncertainty in spectral ID

Lawrence Livermore National Laboratory

Standard Strategies

Regularization

 $B_{rr} = (X'X + kI)^{-1}X'Y$

Note: $cond(x'x + kI) \ge 2e9 \forall k < 1$

- Principle Components Analysis
 - Data lack an exploitable structure

Summary box is now has a full-width bleed

Alternative Strategies

- Library thinning
 - Its not always practical to get rid of spectra
- Library partitioning
 - How many partitions?
 - Where to start assignment?
 - Criteria for each assignment?
- Criteria:
 - For any subset of the library optimal partitions will have: $\lambda_i * m/trace(W)$ above 1
 - SVD based assignment maximize marginal condition number
 - VIF-based minimize top three VIF values

Thinning and partitioning strategies leverage basic measurands of LS process

Full Library				Se	eed Strateg			
	null case			Random	Max SVD	Largest VI	F	Patition n
condition number	47761	Random	Mean Cond	13114	13114	13042		13001
top 3 VIFs	201560		Mean VIF	918	836	913		889
	205120 263690							
	203090	Max partition nth Singular Value	Mean Cond	5899	5637	5637		5724
			Mean VIF	147	242	192		194
		Min partition VIF	Mean Cond	7430	8609	8633		8224
			Mean VIF	209	206	281		232
			mean VIF	425	428	462		
			mean Cond	8814	9031	9104		

Conclusions

- Sizable reduction in error of both point and interval estimates is possible
- Significant tunability exists for specific CONOPS

Partition seed strategy is far less important than assignment criteria

