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Growing data torrent  
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Source: McKinsey Global Institute, “Big Data: The next frontier for innovation, competition, 
and productivity,” May 2011. 



Big Data: Capturing its value

3
Source: McKinsey Global Institute, “Big Data: The next frontier for innovation, competition, and 
productivity,” May 2011. 



 Sheer volume of data

BIG

 Decentralized and parallel processing
 Security and privacy measures

 Modern massive datasets involve many attributes
 Parsimonious models to ease interpretability

and enhance learning performance 

 Real-time streaming data

Fast

 Online processing
Quick-rough answer vs. slow-accurate answer?

 Outliers and misses

Messy

 Robust imputation approaches

Challenges
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Theoretical and Statistical Foundations 
of Big Data Analytics

Algorithms and Implementation Platforms 
to Learn from Massive Datasets 

Graph SP

High-dimensional statistical SP

Analysis of multi-relational data

Big tensor data models and factorizations

Network data visualization

Pursuit of low-dimensional structure

Scalable online, decentralized optimization

Randomized algorithms

Convergence and performance guarantees

Novel architectures for large-scale data analytics 

Information processing over graphs

Common principles across networks

Robustness to outliers and missing data

Resource tradeoffs

Opportunities
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Roadmap

 Conclusions and future research directions

 Randomized learning via data sketching 

 Critical Big Data tasks

 Context and motivation

 Encompassing and parsimonious data modeling 

 Dimensionality reduction

 Data cleansing, anomaly detection, and inference
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Encompassing model
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Noise

Patterns, innovations,
(co-)clusters, outliersBackground (low rank)

Observed data

 Subset                                                        of observations and projection operator   

allow for misses

 Large-scale data            and/or  h  Any of                     unknown

Dictionary              Sparse matrix              



Subsumed paradigms
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 known        Compressive sampling (CS) [Candes-Tao ‘05]  

 Dictionary learning (DL) [Olshausen-Field ’97] 

 Non-negative matrix factorization (NMF) 

(With or without misses)

 Principal component analysis (PCA) [Pearson 1901]

 Principal component pursuit (PCP) [Candes etal ‘11]

 Structure leveraging criterion

Nuclear norm:

: singular val. of 
-norm

[Lee-Seung ’99]
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PCA formulations

 Training data 

 Minimum reconstruction error
 Compression 
 Reconstruction

 Component analysis model 

Solution: 



Dual and kernel PCA

10B. Schölkopf and A. J. Smola, “Learning with Kernels,” Cambridge, MIT Press, 2001

Gram matrix

SVD:

Inner products

Q

Q

Q

Ma

Ma

A1. Stretch it to become linear: Kernel PCA; e.g., [Scholkopf-Smola’01]
 maps       to           , and leverages dual PCA in high-dim spaces

A2.  General (non)linear models; e.g., union of hyperplanes, or, locally linear  
 tangential hyperplanes

Q.  What if approximating low-dim space not a hyperplane? 



Identification of network communities

11
P. A. Traganitis, K. Slavakis, and G. B. Giannakis, “Spectral clustering of large-scale communities via random 
sketching and validation,” Proc. Conf. on Info. Science and Systems, Baltimore, Maryland, March 18-20, 2015.

 Kernel PCA instrumental for partitioning of large graphs (spectral clustering)
 Relies on graph Laplacian to capture nodal correlations

arXiv collaboration network (General Relativity)
4,158 nodes, 13,422 edges

Facebook egonet
744 nodes, 30,023 edges

 For            random sketching and validation reduces complexity to  



Local linear embedding
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 For each       find neighborhood                     , e.g., k-nearest neighbors 

 Weight matrix captures local affine relations 

Sparse        and       [Elhamifar-Vidal‘11]

 Identify low-dimensional vectors preserving local geometry [Saul-Roweis’03]       

Solution: The rows of        are the     minor, excluding      ,

L. K. Saul and S. T. Roweis, “Think globally, fit locally: Unsupervised learning of low dimensional 
manifolds,” J. Machine Learning Research, vol. 4, pp. 119-155, 2003.



Dictionary learning

13
B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: 
A strategy employed by V1?” Vis. Res., vol. 37, no. 23, pp. 3311–3325, 1997.

Solve for dictionary and sparse     : 

(Constrained LS task)

(Lasso task; sparse coding)

 Alternating minimization; both                  and                     are convex  

 Under conditions,                         converges to a stationary point of       [Tseng’01] 



Joint DL-LLE paradigm 

14
K. Slavakis, G. B. Giannakis, and G. Leus, ”Robust sparse embedding and reconstruction via dictionary
learning,” Proc. of Conf. on Info. Science and Systems, JHU, Baltimore, March 2013.

 Inpainting by local-affine-geometry-preserving DL;           misses; PSNR          dB 

DL fit LLE fit Sparsity regularization

 Dictionary morphs data to a smooth basis; reduces noise and complexity

 DL-LLE offers data-driven non-linear embedding for robust (de-)compression



From low-rank matrices to tensors

B=

br

βi

A=

ar

αi

 PARAFAC decomposition per slab t [Harshman ’70]

C=

cr

γi

 Tensor subspace comprises R rank-one matrices

 Data cube                            , e.g., sub-sampled MRI frames

Goal: Given streaming                                        , learn the subspace   
matrices (A,B) recursively, and impute possible misses of Yt

J. A. Bazerque, G. Mateos, and G. B. Giannakis, "Rank regularization and Bayesian inference for tensor completion       
and xtrapolation," IEEE Trans. on Signal Processing, vol. 61, no. 22, pp. 5689-5703, November 2013.
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Online tensor subspace learning

 Real-time reconstruction (FFT per iteration)

 Stochastic alternating minimization; parallelizable across bases

 Image domain low tensor rank 

Proposition [Bazerque-GG ‘13]: With                                           

 Tikhonov regularization promotes low rank

M. Mardani, G. Mateos, and G. B. Giannakis, "Subspace learning and imputation for streaming big data
matrices and tensors," IEEE Trans. on Signal Processing, vol. 63, pp. 2663 - 2677, May 2015. 16



Dynamic cardiac MRI test
 in vivo dataset: 256 k-space 200x256 frames

R=100, 90% misses R=150, 75% misses

Ground-truth frame

Sampling trajectory

 Low-rank                   plus                      can also capture motion effects  

 Potential for accelerating MRI at high spatio-temporal resolution  

M. Mardani and G. B. Giannakis, "Accelerating dynamic MRI via tensor subspace learning,“ 
Proc. of ISMRM 23rd Annual Meeting and Exhibition, Toronto, Canada, May 30 - June 5, 2015. 17



Roadmap

 Critical Big Data tasks

 Context and motivation

 Conclusions and future research directions

 Randomized learning via data sketching

 Randomized linear regression

 Johnson-Lindenstrauss lemma

 Randomized clustering
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Randomized linear algebra

 Attractive features 
 Reduced dimensionality to lower complexity with Big Data
 Rigorous error analysis at reduced dimension

 Basic tools: Random sampling and random projections

 SVD incurs complexity                 . Q: What if                ?  

M. W. Mahoney, Randomized Algorithms for Matrices and Data, Foundations and Trends
In Machine Learning, vol. 3, no. 2, pp. 123-224, Nov. 2011.

If

Ordinary least-squares (LS) Given
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Randomized LS for linear regression

 Random diagonal w/                                                               and Hadamard matrix

 Select reduced dimension

 Complexity reduced from                   to                                   

N. Ailon and B. Chazelle, “The fast Johnson-Lindenstrauss transform and approximate nearest neighbors,”
SIAM Journal on Computing, 39(1):302–322, 2009.

 subsets of data obtained by uniform sampling/scaling via                
yield LS estimates of “comparable quality” 

 LS estimate using (pre-conditioned) random projection matrix Rd x D
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Johnson-Lindenstrauss lemma

W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz maps into a Hilbert space,” Contemp. Math,
vol. 26, pp. 189–206, 1984.

JL lemma: If                     , integer     , and reduced dimension satisfies 

then for any                                                   there exists a mapping                           s.t.

Almost preserves pairwise distances! 

 The “workhorse” for proofs involving random projections

(  )

 If                                    with i.i.d.                entries of  and reduced dimension      

, then      holds w.h.p. [Indyk-Motwani'98] ( )  

 If                                   with i.i.d. uniform over {+1,-1} entries of  and reduced 
dimension as in JL lemma, then        holds w.h.p. [Achlioptas’01]     ( )  
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Performance of randomized LS

M. W. Mahoney, Randomized Algorithms for Matrices and Data, Foundations and Trends
In Machine Learning, vol. 3, no. 2, pp. 123-224, Nov. 2011.

condition number of     ; and 

For any            , if                                     , then w.h.p.Theorem

 Uniform sampling vs Hadamard preconditioning 

 D = 10,000 and p =50
 Performance depends on X 
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Online censoring for large-scale regression

D. K. Berberidis, G. Wang, G. B. Giannakis, and V. Kekatos, "Adaptive Estimation from Big Data via Censored  
Stochastic Approximation," Proc. of Asilomar Conf., Pacific Grove, CA, Nov. 2014.

 Key idea: Sequentially test and update RLS estimates only for informative data

 Adaptive censoring (AC) rule

 Criterion reveals “causal” support vectors (SVs)  

 Threshold controls avg. data reduction:   
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Censoring algorithms and performance

Proposition:  AC-RLS

AC-LMS

 AC recursive least-squares (RLS) at complexity  

 AC Kalman Filtering and Smoothing for “tracking with a budget”  

 AC least mean-squares (LMS)   

D. K. Berberidis, and G. B. Giannakis, "Online Censoring for Large-Scale Regressions,"
IEEE Trans. on SP, 2015 (submitted); also in Proc. of ICASSP, Brisbane, Australia, April 2015.



Censoring vis-a-vis random projections

 Random projections for linear regression [Mahoney ‘11]

 Adaptive censoring (AC-RLS)

 Data-agnostic reduction decoupled from LS solution 

 Data-driven measurement selection
 Suitable also for streaming data
 Minimal memory requirements
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Highly  non-uniform data

 AC-RLS outperforms alternatives at comparable complexity 

 Robustness to uniform data (all rows of  X equally “important”)

Performance comparison
 Synthetic: D=10,000, p=300  (50 MC runs); Real data:           estimated from full set  

26
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Big data clustering 

 Given                  with                                     assign them to clusters  
 Key idea: Reduce dimensionality via random projections
 Desiderata: Preserve the pairwise data distances in lower dimensions

Feature extraction

Construct                  “combined”                                                                                        
features (e.g., via          )  

Apply K-means to -space

Feature selection

 Select of input features
(rows of )

 Apply K-means to -space

27
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Random sketching and validation (SkeVa)
 Randomly select               “informative” dimensions  

 Algorithm 

 Sketch dimensions: 

 Similar approaches possible for

For

 Run k-means on 

 Re-sketch                      dimensions  

 Validate using consensus set  



 Augment centroids                                                     , 

 Sequential and kernel variants available

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, “Clustering High-Dimensional Data via Random Sampling
and Consensus,“ Proc. of GlobalSIP, Atlanta, GA, December 2014. 28



RP versus SkeVA comparisons

KDDb dataset (subset)
D = 2,990,384, T = 10,000, K = 2

SkeVa: Sketch and validate
RP: [Boutsidis etal ‘13] 

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, "Sketch and Validate for Big Data Clustering,"
IEEE Journal on Special Topics in Signal Processing, June 2015. 29



Closing comments

 Big Data modeling and tasks
 Dimensionality reduction
 Succinct representations
 Vectors, matrices, and tensors

 Learning algorithms
 Data sketching via random projections
 Streaming, parallel, decentralized

 Implementation platforms 
 Scalable computing platforms
 Analytics in the cloud

K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimization for Big Data analytics,” 
IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 18-31, Sep. 2014. 30
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