Attacking DBSCAN for Fun and Profit
(Proceedings of the SIAM International Conference on Data Mining, May 2015, Vancouver, CA)

Jonathan Crussell, Philip Kegelmeyer
{jcrusse, wpk}@sandia.gov

Sandia National Laboratories, California

May 13th, 2015

---

1 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
App Plagiarism

Gibler et al. (MobiSys'13) estimate losses of 14%
App Plagiarism

Gibler et al. (MobiSys'13) estimate losses of 14%
App Plagiarism

Miscreants copy apps to siphon ad revenue

- Gibler et al. (MobiSys’13) estimate losses of 14%
AnDarwin (Crussell et al., ESORICS’14):

- Crawled 265K apps from 17 Android markets
AnDarwin (Crussell et al., ESORICS’14):

- Crawled 265K apps from 17 Android markets
- Detected copied apps via clustering based on DBSCAN

*Not* designed to be robust to attacks against data analysis
AnDarwin (Crussell et al., ESORICS’14):
- Crawled 265K apps from 17 Android markets
- Detected copied apps via clustering based on DBSCAN
- One application: plagiarism detection
AnDarwin (Crussell et al., ESORICS’14):

- Crawled 265K apps from 17 Android markets
- Detected copied apps via clustering based on DBSCAN
- One application: plagiarism detection
- Designed to be robust to attacks against data representation
AnDarwin (Crussell et al., ESORICS’14):

- Crawled 265K apps from 17 Android markets
- Detected copied apps via clustering based on DBSCAN
- One application: plagiarism detection
- Designed to be robust to attacks against data representation
- *Not* designed to be robust to attacks against data analysis
AnDarwin
Thinking like an Adversary

What goals might an adversary have?

- Avoid being clustered with similar apps
- Favorably alter clustering structure
- ...
Thinking like an Adversary

What goals might an adversary have?

- Avoid being clustered with similar apps
- Favorably alter clustering structure
- ...

*Confidence Attack*

- Inject new points into dataset to poison the clustering
Confidence Attack
In most cases, we analyze "found data:"

- Play
- 8 English
- 6 Chinese
- 2 Russian
In most cases, we analyze “found data:"

Semantic Gap (Jana and Shmatikov, IEEE S&P’12)
  • Program analysis vs program execution
1. Pick two clusters to merge
1. Pick two clusters to merge
2. Generate series of optimal data mines between two clusters
Attack Methodology

1. Pick two clusters to merge
2. Generate series of optimal data mines between two clusters
3. Goto 1 until all desired merges completed
Generating Data Mines

AnDarwin represents apps as sets

- Minimum Jaccard similarity threshold $T$
Generating Data Mines

AnDarwin represents apps as sets

- Minimum Jaccard similarity threshold $T$

Generate points exactly $T$-width apart:

$$p_i - 1 \quad p_i \quad p_{i+1}$$
Generating Data Mines

DBSCAN (Ester et al., KDD’96):

- Core point has $\geq MinPts$ neighbors in $T$-neighborhood
- Clusters form around a core point:
  - Other core points that are at least $T$ similar to a core point already in the cluster
  - Points in the $T$-neighborhood of a core point
Generating Data Mines

DBSCAN (Ester et al., KDD’96):

- Core point has $\geq \text{MinPts}$ neighbors in $T$-neighborhood
- Clusters form around a core point:
  - Other core points that are at least $T$ similar to a core point already in the cluster
  - Points in the $T$-neighborhood of a core point

Generate points to match $\text{MinPts}$:

![Diagram showing points $p_{i-2}, p_{i-1}, p_i, p_{i+1}, p_{i+2}$ in a $T$-space grid with $T$ and $\sqrt{T}$ boundaries.]}
Which Clusters to Merge?

Depends on adversary goals (and, perhaps, budget)
Which Clusters to Merge?

Depends on adversary goals (and, perhaps, budget)

- Maximally degrade plagiarism detection accuracy
Which Clusters to Merge?

Depends on adversary goals (and, perhaps, budget)

- Maximally degrade plagiarism detection accuracy

Dataset: 273 randomly selected clusters (1,394 apps total)
Defenses?

Increasing $T$ and $MinPts$ may cause us to miss plagiarizing apps
Defenses?

Increasing $T$ and $MinPts$ may cause us to miss plagiarizing apps

Instead, can we detect and remove data mines?
Defenses?

Increasing $T$ and $MinPts$ may cause us to miss plagiarizing apps. Instead, can we detect and remove data mines?
Defenses?

Increasing $T$ and $MinPts$ may cause us to miss plagiarizing apps.

Instead, can we detect and remove data mines?
Defenses?

Increasing $T$ and $MinPts$ may cause us to miss plagiarizing apps

Instead, can we detect and remove data mines?
Remediation Results

Plagiarism detection accuracy

Tampered
Remediated

After merge

13/14
Conclusion

Contributions:

- Methodology for selecting and then merging arbitrary clusters
- Evaluate effectiveness in a real-world scenario
- Show DBSCAN’s vulnerability to the chaining phenomenon
- Propose and evaluate outlier-based remediation

Questions/Comments?

Presenter: Jonathan Crussell
jcrusse@sandia.gov

This work was supported by the CADA LDRD program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.
How Many Data Mines?

As a function of the $T$:

$$UBAC(T) = \frac{1 + T}{1 - T} - 1$$
How Many Data Mines?

As a function of the $T$:

$$UBAC(T) = \frac{1 + T}{1 - T} - 1$$

As a function of $T$ and $MinPts$:

$$UBAC(T, MinPts) = \frac{1 + \frac{MinPts - 1}{2} \sqrt{T}}{1 - \frac{MinPts - 1}{2} \sqrt{T}} - 1$$