
 
 

Discrete time 
  
Sampled signal– rigorous analysis 
     Often signal analysis requires translation of continuous time models into discrete 

time models and vice versa. The time transition is obvious for continuous signals. 

For signals that do not have instantaneous values,  

we apply  (4) with properly chosen measurement   

function.  We model the “measurement” by 

a test function            smooth and close to  

rectangular  of value 1/Δt  in the interval 

 [(k-1/2) Δt, (k+1/2) Δt] and zero elsewhere.  

 

Then we define the k-th signal’s sample as: 
 
 
(5) 
 
 
     In other words, the k-th signal’s sample is its  average  taken over the interval  

[(k-1/2) Δt, (k+1/2) Δt]. 
 
 

Correlation Function 
Thus, with discrete-time samples defined by (5),  the discrete time covariance (2) 
becomes a special case of (4): 
 
 
 
(6) 
 
 
White Noise 
A white noise  in discrete time is defined by  the correlation matrix 
 
(7) 
 
 
In continuous time its correlation function is often  (see [4]) defined as 
 
 
(8) 
 

where 

(9) 

 

which follows from: 

  

(10) 

 

 

In the next section we want to justify the definition (8) and  use (4) to prove 

(9) and (10) 
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 Alternative definition: 
 
Kernel Theorem: 
     Let us now relate the autocorrelation defined  by (4)  with an analogue of  (1) 

which is often used in engineering literature [4] and is defined as a two-variable  

distribution : 

(11) 

 

Intuitively, i.e., without concern for the existence of the integrals, one formally 

derives : 

 

 

 

 

 

That suggests  the definition (11): 

 

(12)  

 

     Rigorously, the existence of          follows from the Kernel Theorem  [1-3] 

 

    When  the signal             is continuous , then (11) is well defined and  when  the 

test functions       are narrowly focused (the measurements are focused in time) 

small, then (4) approaches (11)=(1).  

 

     It follows from (12) that the relation of the kernel distribution           to the discrete 

time covariance is :  

 

(13) 

 

where the integration goes over  intervals of length Δt. 

 

      We can now derive (10) as a special case of (13): 
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Motivation 
       This paper’s aim is threefold:  

i. Introduce a rigorous definition for autocorrelation function for signals that do not 

have instantaneous time value,  

ii. Justify the popular expression of autocorrelation used in engineering practice, 

iii. Derive relationship between the rigorous the intuitive and the discrete time 

definitions of signal correlation. 

 
Popular  definition: 
When a signal  has instantaneous values, then its samples and autocorrelation 

functions are well defined for, respectively discrete and continuous, time as: 

Continuous  Time :                      

 (1) 

 

  Discrete Time: 
  
(2) 
                                                                                                                                 
where  E(y) denotes an expected value of the random variable  y. 

 
Signal value replaced by instrument reading: 
    When signals do not have instantaneous values, as is typical for noise, 

we use its measured value (instrument reading): 

 

 

 

 

defined as:                                                                                     

(3) 

 

which is a real valued random variable. 

          The formal integration (3) illustrates , the new random variable as 

filtered (or smoothened or windowed) noise. Rigorously speaking we model 

signals of interest as elements of a functional space conjugate to  a space 

of well behaved functions (smooth and fast decreasing test functions)  [1-3]. 

These well behaved functions play the role of instrument responses.  

 

Rigorous definition 
Now we use (3) to define the correlation of two random variables: 
 
  
 (4) 
                                                                                              
                                                                                                                
that represent two “instrument readings,” rather than two moments of time. 
 
 

Detector  -  φ 
η - signal (η,φ) - reading 
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