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The XOR Problem 

A Complex Valued Neuron 

Visual information are inherently 3-D. Complex light signals can be used to capture the 3-D 

information such as in a hologram. Oppenheim and Lim [1] demonstrated that the phase of a 

complex Fourier transform can recreate the original scene much better than the amplitude of the 

Fourier transform alone. It is theorized therefore if information processing can be done in the 

complex domain using complex valued threshold elements in an interconnected fashion, then 

more computational capability can be harnessed through such a network. It was shown that 

using a weighted complex summation and magnitude thresholding, the decision surfaces are 

naturally curved [2]. Due to its nonlinear decision boundaries, it was shown in 1999 that a single 

complex valued threshold element is capable of solving the nonlinear XOR problem compared 

to multilayer perceptrons using real values. In 2003, Nitta also showed similar results [3] using a 

Complex valued neuron. For three variable Boolean logic, 104 linearly separable problems are 

solvable by conventional perceptrons. Using Complex valued neural network (CVNN) 135% 

over that limit of logic operation is achieved without additional logic, neuron stages, or higher 

order terms such as those required in polynomial logic gates [4]. Although magnitude 

thresholding was chosen for possible optical implementation [5], computationally one can 

employ a phase and/or complex thresholding [6].  

 

* When the work was  done both authors were with Wright State University, Dayton, Ohio 
 

Mathematics of a Complex Valued Neuron Training and more results 
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Input mapping: from real value to Complex input 

Input XOR Intermediate 

0       0 0 q1 

0        1 1 q2 

1 0 1 q3 

1 1 0 q4 

Input mapping 

0        e(jπ/2) .0         1 
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Complex-valued intermediate space for XOR problem 

XOR Solution Weights 

For  (0  0), q = 1(1) + 1(-1) = 0 
For  (1  1), q = j(1) + j(-1) = 0 
For  (0   1),q = 1.1+eiπ/2.ej π = 1 + ei 3π/2 

For  (1   0),q = eiπ/2.1+.ej π = eiπ/2  + ei π 
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Results 

Y =

y1y2y3y4

1 2 b

0000 -0.3246 1.4096 -1.7286

0001 1.5425 0.1151 -1.9035

0010 -1.0964 1.9306 1.0902

0011 0.0973 2.8959 -3.0582

0100 -2.4710 -0.2429 2.3096

0101 0.6664 -2.0151 0.7127

0110 -2.3024 1.0335 1.7290

0111 -0.6707 -0.4818 2.2412

1000 1.9473 1.9035 0.1437

1001 -2.4268 -3.0646 1.1171

1010 1.3255 -3.1392 0.7240

1011 2.1486 -2.3042 -1.7459

1100 -0.5393 -1.6445 -2.0235

1101 0.6765 -0.4642 -0.6235

1110 1.1095 0.8900 -0.0889

1111 0.2856 0.4488 0.6283

Learned weights, in radians, for 2-input-plus-bias complex-valued 

perceptron For 16 functions of 2 input Boolean logic 

For 3 input Boolean logic 245 out of 256 functions 

were learned 
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Image segmentation using CVNN 

Future: Extend to deep learning 

Performs complex multiplication, complex 

addition and magnitude thresholding 

P = input phase vector 

W = weight 

q = weighted sum , a = thresholded output  

All terms such as bias, threshold and the weights can be trained to 

learn a specific function 

Weight with bias term 

Training threshold 

Training bias 
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Learning the weights 
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