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from John Stevenson <solarjack@gmail.com>	


to Pietro Perona <perona@vision.caltech.edu>	


date Thu, Aug 6, 2009 at 7:50 AM	


subject Mushrooms galore at Caumsett	


!
Can I eat this one? - Love John	


!
Sent from my iPhone
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Wikipedia says: use a field guide
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Yet, the info is there...

8



9



Visual expertise:  
not easily accessible to 

machines
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[picture credit: http://www.rvc.ac.uk/SML/Projects/Evolution3DDinos.cfm]

http://www.rvc.ac.uk/SML/Projects/Evolution3DDinos.cfm


Lessons:

• Visual queries	



• Easy for humans	



• Difficult for machines	



• Pictures are digital dark matter	



• Expert knowledge - how to collect?
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How do we make this 
happen?
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Unsupervised learning

[Fergus et al., CVPR03] 20



Supervised learning

[Felzenszwalb et al. ’10]



[Krizhevsky et al. N
IPS 2012]



Need for human expertise
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If you believe you may have seen an Ivory-billed
Woodpecker, immediately after the sighting, make a
drawing of what you saw, noting the following
characteristics:

■ Color of trailing edge of wing (white vs. black)

■ Crest and forehead color

■ Bill color

■ Chin color

■ Relative size

■ Vocalizations

■ Habitat

If you are with someone else, individuals should make
their own notes without conferring with each other.

Please report any sightings to refuge officials and to the
Cornell Lab of Ornithology via its website:
http://www.birds.cornell.edu/ivory

Red-headed
Woodpecker

Pileated
Woodpecker

Wood Duck

Red-headed
Woodpecker

Female Head
■ Female Ivory-bill crest is entirely black (female

Pileated crest resembles male ivory-billed red crest
with black forehead – use chin color as distinguishing
feature)

Male
Pileated
Woodpecker

Red-headed
Woodpecker

Female
Pileated
Woodpecker

Female
Ivory-billed
Woodpecker

White trailing
edge of wing

In flight - view from below In flight - view from above At rest Guidelines for recording a sighting

Distinct Ivory-billed Woodpecker characteristics:
■ White trailing edge of wing

(vs. dark trailing edge of Pileated).

■ Wing more slender than Pileated.

■ Tail feathers longer and more pointed.

■ Pale, ivory-
white bill.

Distinct Ivory-billed Woodpecker characteristics:
■ White trailing edge of wing

(vs. dark trailing edge of
Pileated).

■ Two white stripes
converge on lower back.

■ Tail feathers longer and
more pointed.

■ Pale, ivory-white bill.

Distinct Ivory-billed Woodpecker characteristics:
■ Two white stripes converge on lower back.

■ Entirely white secondary feathers give appearance of
white “saddle” on back.

■ Largely dark face and dark chin (vs. white chin of
Pileated).

■ Pale, ivory-white bill.

■ Crest is curved and pointed;
male crest is red with
black forehead
(Pileated male
crest is entirely
red).

Pileated
Woodpecker

Ivory-billed
Woodpecker

Male
Ivory-billed
Woodpecker

White trailing
edge of wing

In flight - view from above At rest Guidelines for recording a sighting

Ivory-billed
Woodpecker

Male
Ivory-billed
Woodpecker

White trailing
edge of wing

Identifying Field Marks of an Ivory-billed Woodpecker and Similar Birds

Wood Duck

Ivory-billed
Woodpecker

In flight - view from below

Illustrations: © David Allen Sibley

   Please bookmark these important websites:

http://www.fws.gov/ivorybill
Information on the recovery of the Ivory-billed
Woodpecker

http://cacheriver.fws.gov/
Up-to-date information on refuge public use and
regulations

http://www.agfc.com
Arkansas hunting regulations

http://www.birds.cornell.edu/ivory
To report sightings of the Ivory-billed Woodpecker
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VISIPEDIA
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annotations,  links,	
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Crowdsourcing image 
annotation

[Welinder et al., NIPS2010]



Indigo Bunting



5,926 images



Building datasets
6000 images	



from flickr.com
100s of	



training images

filter



Annotators

Is there an Indigo bunting in the image?

Building datasets
6000 images	



from flickr.com
100s of	



training images



Find the Indigo Bunting
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Hit Miss

False Alarm
Correct 
Rejection

Characterizing annotators: types of errors

Indigo Bunting? Yes No
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Indigo Bunting Blue Grosbeak
Experiments: estimating zi
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Sanity Check 2: Rotated Ellipses Experiment
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Greebles: estimating multiple attributes

Synthetic figures distinguished	


by height and color
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Greebles: estimating multiple attributes



Many binary labels

Model (2-dimensional)	


+ Inference

Greebles: estimating multiple attributes
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Last Experiment: Waterbirds

Mallard American Black Duck

Canada Goose Red Necked Grebe Non-bird
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Waterbirds

Mallard American Black Duck

Canada Goose Red Necked Grebe Non-bird

DUCKS
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The first application: 
sleep annotation

[Warby et al.  2014]
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Figure 9. Progress of the online algorithm on a random permuta-
tion of the Presence-1 dataset. See Section 7 for details.

requested by the algorithm decreases. Notice in the figure
that towards the final iterations, the algorithm samples only
2–3 labels for some images.

To get an idea of the performance of the online algo-
rithm, we compared it to running the batch version from
Section 3 with limited number of labels per image. For the
Presence-1 dataset, the error rate of the online algorithm is
almost three times lower than the general algorithm when
using the same number of labels per image, see Figure 8.
For the Presence-2 dataset, twice as many labels per image
are needed for the batch algorithm to achieve the same per-
formance as the online version.

It is worth noting that most of the errors made by the on-
line algorithm are on images where the intrinsic uncertainty
of the ground truth label is high, i.e. |Ri| as estimated by
the full model using all 15 labels per image is large. In-
deed, counting errors only for images where |Ri| > 2 (us-
ing log base 10), which includes 92% of the dataset, makes
the error of the online algorithm drop to 0.75%± 0.04% on
Presence-1. Thus, the performance clearly depends on the
task at hand. If the task is easy, and most annotators agree,
it will require few labels per image. If the task is difficult,
such that even experts disagree, it will request many labels.
The tradeoff between the number of labels requested and
the error rate depends on the parameters used. Through-
out our experiments, we used m = 15, n = 20, ⇥ ⇥ = 2,
�v = 8� 10�3.

8. Conclusions
We have proposed an online algorithm to determine, with
high probability, the ‘ground truth value’ of some prop-
erty in an image from multiple noisy annotations. As a by-
product it produces an estimate of annotator expertise and
reliability. It actively selects which images to label based on
the uncertainty of their estimated ground truth values. We
have shown how the algorithm can be applied to different
types of annotations commonly used in computer vision:
binary yes/no annotations, multi-value attributes as well as
continuous-valued annotations (e.g. bounding boxes).

Our experiments on MTurk showed that there are differ-
ent kinds of annotators. One group of workers, which we
call experts, consistently provide high quality labels. An-
other group of labelers provide unreliable and random la-
bels. We also find that equally skilled annotators differ in
the relative cost they attribute to false alarm errors and to
false reject errors. Our algorithm can estimate this quantity
as well.

Our algorithm minimizes the labeling cost by finding
and prioritizing experts online. By combining just the right
number of noisy annotations it defines an optimal ‘virtual
annotator’ that integrates the real annotators without wast-
ing resources. Thresholds in this virtual annotator may be
designed optimally to trade off the cost of obtaining one
more annotation with the cost of false alarms and the cost
of false rejects.
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Challenges

• Lots of images	



• Annotators working on small subsets	



• Categorization criteria may differ



Approach
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Generative Model

•Assume images drawn from clusters in an embedding space	


•Each annotator corresponds to an inner product in that space
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cluster 1

•Annotator 1: sensitive to ground vs. air 

cluster 2
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How do we aggregate the results 	


from the crowd?



•Annotator 2: sensitive to left vs right

cluster 1 cluster 2
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Generative Model

<τ2

>τ2

<τ2

>τ2

•Annotator 2: sensitive to left vs. right 
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Crowdclustering

• Experiments ~104 images, ~102 workers	



• Works well	



• Better than one expert	



• Any discoveries?
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Summary

• Vision and Knowledge	



• Visipedia	



• Crowdsourcing visual processing	



• Crowdclustering

http://www.vision.caltech.edu/visipedia/
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