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 In 1 month, more video content is uploaded to YouTube than all the 

US media companies have produced in 60 years. 

 YouTube videos are uploaded 100 hours/minute. 

 

 

 

 

 

 Organization, retrieval, and analysis requires automation and aid 

from machine learning. 

User Generated Content (UGC) 

fastest growing open source data 
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Application: Event Detection 

E001    Attempting a board trick 

E002    Feeding an animal 

E003    Landing a fish 

E004    Wedding ceremony 

… 

E006    Birthday party 

E007    Changing a vehicle tire  

E008    Flash mob gathering 

E009    Getting a vehicle unstuck 

E010    Grooming an animal 

E011    Making a sandwich 

… 

E015    Working on a sewing       

project 

… 

E025    Marriage proposal 

E029    Winning a race without a 

      vehicle 

E030    Working on a metal crafts 

      project 
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 To generalize, most ML algorithms add complexity by: 
• Adding more parameters (e.g., manifold learning, GMM’s, 

probabilistic graphical models, etc.) 

• Putting more nonlinear functionality into a linear learner (e.g., SVM’s, 
manifold learning, kPCA, k-Density estimates, etc.) 

• Recently, nonparametrics (e.g., infinite Bayesian models, etc.) 

 Mid-2000’s movement to do all of that but repeatedly 
 

Background: Deep Learning 

Taken from  

Ng. et al, ‘13 
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System Description 

TRECVID MED 2013 
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 Training based on annotated datasets developed by CMU, SRI, Stanford 

 Input MFCC Features + Energy Coefficients 

 Two-stage for short-term and long-term predictions 

 Temporal consistency improved with HMM models 

Audio Classifiers with H-DNN 

HMM 
Audio Deep 

Neural Network 
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System Description 

Neural 

Network 

TRECVID MED 2013 

Pre-Train / Initialize Online 
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 ImageNET 2012: Object detection on 1,000 classes 
• Competition winner: Alex Krizhevsky 

• Deep Neural Network Architecture. 

 

 

 

 

 

 Image Network will get you close, but… 
• Specifically targeted at nouns and objects 

• Discrete concepts produce a largely noisy result 

• Fewer output options means limited discrimination 

• Effectively make a “hard” decision before the real result 

Image Classifiers with D-NN 
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 Newly tuned TRECVid image classifier: apply 2, use 1 layer: 
• L8: Reconstruction ICA Objective Layer: 4096 neurons 

• (Tune L9): Softmax regression layer for multiple instance learning 

• Sigmoid non-linearity (in addition to ReLU) onto L8 

 Sum over all frames (L8) to obtain histogram-like features 

 Use an SVM Classifier to make the final decision 

From ImageNET to TRECVid 
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Relevant? 

+/-  

Examples 

Classification & Relevance Feedback 
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 Corpora 
• TRECVID-2013 MED Dataset, ~150k Videos from YouTube, 

Some Hollywood 2 Datasets 

 Image Feature-Based Comparisons 
• 8% Improvement Over SIFT-BoW Based Approach 

[TRECVID MED 13, Competition Results] 

 HMM-HDNN Approach 
• 0.68% average precision improvement over MFCC-Based 

Approach [Elizalde et al] 

 Multi-modal Approach 
• 4.23% Improvement over SIFT + MFCC-Based Approach 

• -25.3% based on comparative Amazon Turk classification 

Quantitative Comparisons 
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Questions? 


