NIF Target Diagnostic Automated Analysis: Transitioning to a User Facility

Presentation to
CASIS
May 21, 2014
LLNL-PRES-654645

Judith Liebman, Rita Bettenhausen, Essex Bond, Allan Casey, Robert Fallejo, Matt Hutton, Amber Marsh, Abbie Warrick
Automated diagnostic analysis is used to estimate NIF experimental key performance metrics and enable facility optimization

Key performance metrics

- **Temperature:**
 - Hot spot temperature
 - Hohlraum radiation temperature

- **Density** – areal density of hot spot

- **Yield** of fusion reaction—total production of neutrons or gammas

- **Velocity** – measure of capsule radius over time

- **Shape** – symmetry of the implosion

- **Timing**
 - Shock timing
 - Bang time – time of peak fusion reaction

- **Preheat** of the ablator
After a NIF laser shot, analysis is automatically run on data from more than 20 target diagnostic systems

- **Neutron and γ Diagnostics**
 - Neutron Imaging System (NIS)
 - For Hot Spot Shape and Burn Physics
 - Neutron Time of Flight (nTOF)
 - Gamma Reaction History (GRH)
 - Particle Time of Flight (pTOF)
 - For Burn Physics, Nuclear Physics

- **Optical Diagnostics**
 - Full Aperture Backscatter (FABS)
 - Near Backscatter Imager (NBI)
 - For Energy Balance and Laser/Plasma Instabilities
 - VISAR Velocity Interferometer
 - For Reflections from Shock Waves and Surfaces

- **X-Ray Diagnostics**
 - Filter Fluorescer (FFLEX)
 - For Electron Preheat
 - Soft x-rays
 - 0.05 to 12 keV
 - (Hohlraum temperature)
 - Hard x-rays
 - >20 keV
 - Dante X-ray
 - For Hohlraum Drive
 - South Pole Bang Time (SPBT)
 - For X-ray Bang Time

- **Other Diagnostics**
 - Static X-ray Imager (SXI)
 - For Radiation Drive
 - DIM Insertable Streak Camera (DISC)
 - For Velocity
 - SPIDER Streaked Polar Imager for X-ray Burn History
 - Gated X-ray Detectors (GXD, Ariane)
 - For Shape and Time History
Overview from study on shifts needed for diagnostic scientists, setup, and analysis to support the NIF user facility

• Full automation of diagnostics is feasible with minimum loss of data quality
 — Deliver defined standard analysis results within stated errors
 — Stretch analysis goals may be compromised (e.g. NTOF velocity)

• Templates can be used to set up diagnostics with little risk to equipment
 — Restrict use of some templates based on set up values such as laser energy or neutron yield

• All diagnostics require some scientist support to achieve automation
 — Implement templates and automated approval
 — Analysis requirements updates
 — Update calibrations used for automated analysis
 — Guidelines and estimators for diagnostic set up

• Implementation will require a cultural change
 — Program not blame diagnostic scientist for operations failure
 — Diagnostic scientist accept operations failure due to incorrect set up
 — Diagnostic scientists fully adopt automated processing instead of rerunning manual analysis
User facility analysis example: Static x-ray imager (SXI)

- SXI uses hohlraum wall to back light the laser entrance hole (LEH) closure
- Two SXI instruments are positioned almost opposite each other within NIF

SXI LEH closure size, with Dante, are important for quantifying the energetics aspects of ignition hohlraums and producing radiation Temperature
Introduction to SXI data: SXI-Lower has four hard images, SXI-Upper has two hard and one soft (mirror channel) image

SXI-Lower
- Pinhole image (used for pointing)

SXI-Upper
- Pinhole image (used for pointing)

Subimage with LEH closure measurement

Reflection off multilayer mirror

Compressed, since mirror elongates images

Key Goals for Analysis Measurements:
1. Size of Clear Aperture in SXI-Lower
2. Size of Clear Aperture in SXI-Upper hard image
3. Fraction of counts in SXI-Upper soft image within Clear Aperture of SXI-Upper hard channel
4. Pointing and magnification of SXI instrument, identified by centroiding all pinhole images
5. Brightness of beam spots (currently requires manual analysis)
Examples of disparate SXI data – overflow, halos, majority of circle missing, extremely variable intensities
Accurate segmentation is achieved using Isodata & minimum perimeter threshold, adaptive threshold removes outer pixels in areas of low standard deviation.

After segmentation, adaptive & morphological filtering, edge finding, and preserving only outermost pixels:

Find top 10% of best fit circles using Hough Circles, evaluate based on ave ‘gap density’ and ‘gap density’ stddev around circle to choose best candidate:

Gaps are the distance between data perimeter and circle candidate.
SXI pointing & magnification calculations require accurate centroiding of all pinhole sub-images

Match filtering is used to identify all candidate pinholes. Compare autocorrelation metrics with candidate peaks to identify pinholes:

- Pedestal: Number of pixels in the top 80%
- Formfactor (shape evaluation)
- Expected vertical & horizontal pairings
SXI-Upper automated analysis results dashboard

These sub-images show the calculated LEH closure size.

- **Hard X-ray Clear Aperture**
 - LEH Diameter: 2.938 mm
 - LEH Radius: 1.768 pixels
 - Mirror Count Fraction: 0.211
 - X, Y LEH Center: 244.139, 238.102 pixels
 - X, Y Mirror Center: 965.128, 321.912 pixels

- **Soft X-ray Diameter**
 - Mirror Diameter: 2.825 mm
 - Mirror Radius: 1.768 pixels

- **Fraction of counts in soft channel**

Shot: N121226-002-999 Quality: Good

Shot: N121226-002-999 Quality: Good
Example of the diagnostic scientist’s analysis results report

SXI-Lower 50 µm Ti + 75 µm Be (different snout)
CLEAR Aperture: 2.79 mm

SXI-Upper 870 eV image
88.0 % is within SXI-U clear aperture 40 µm PH

SXI-Upper 50 µm Ti + 2 µm Cu + 1 µm polyimide
CLEAR Aperture: 2.81 mm

MEASURED:
1. Size of Clear Aperture in SXI-Lower (calculated with independent algorithm)
2. Size of Clear Aperture in SXI-Upper hard image (calculated with independent algorithm)
3. Fraction of counts in SXI-Upper soft image within Clear Aperture of SXI-Upper hard channel
4. Brightness of beam spots (based on scientist inspection)
Comparison of scientist manual analysis of clear aperture to automated analysis

SXI-L Clear Aperture
Automated analysis tends to be ~ 2% high (~ 30 µm)

SXI-U Clear Aperture (3-5 keV)
Automated analysis tends to be ~ 2% high
Comparison of scientist analysis to automated for ultimate goal, DANTE flux correction

Fraction of Soft image counts within 1.2 mm diameter
Automated analysis is ~ 4% lower

DANTE Correction
(frac * (Orig_LEH / diam)^2
Automated analysis about 3-5% lower on average

- Scientists requested update to diameter used to calculate fraction
Review how SXI automated analysis will meet diagnostic shift towards NIF user facility

• Full automation of diagnostics is feasible with minimum loss of data quality
 — Deliver defined standard analysis results within stated errors
 — Stretch analysis goals may be compromised (e.g. SXI beam spot analysis)

• Templates can be used to set up diagnostics with little risk to equipment
 — Restrict use of some templates based on set up values such as laser energy or neutron yield

• All diagnostics require some scientist support to implement automation
 — Implement templates and automated approval
 — Analysis requirements updates
 — Update calibrations used for automated analysis
 — Guidelines and estimators for diagnostic set up

• Implementation will require a cultural change
 — Program not blame diagnostic scientist for operations failure
 — Diagnostic scientist accept operations failure due to incorrect set up
 — Diagnostic scientists fully adopt automated processing instead of rerunning manual analysis
To calculate fraction of counts inside certain Diameter vs Diameter in Soft image, stretch image & calculate radial distribution function

Simulation of DANTE view of LEH: notice flux

The flux inside the "clear aperture" is used to calculate flux onto capsule

IMAGE stretched vertically by $1/\cos(19^\circ)$ to be circular

Calculate radial distribution function (RDF)
Then fract counts within each diameter vs diameter
Find LEH diameter – outline of LEH size estimation algorithm

• Set expected width of pinhole subimage (500x500 pixels), border size (100 pix), approx radius (100 pix)
• Run td_identify_2d_region – finds general regions using isodata threshold (or if that fails uses simple % threshold) & ignoring border. Smooths and dilates to connect neighboring regions, still pinholes are often broken up.
• Find second brightest pinhole: chose region with second greatest median (correctly orders regions if there is a very bright spot in one).
• Stretch in the x direction to make circular from oval: use congrid
• Main segmentation:
 – new min_perimeter_thresh searches for threshold that creates the minimum perimeter. Need to input the minimum area accepted and the amount of dilation/erosion to use.
 – Also find the isodata threshold, apply the average of the min perimeter and isodata thresholds
 – Remove extra particles with a morphological opening
 – If the threshold resulted in less than half of the expected circle size, use a morphological closing to fill in any gaps.
 – Apply a new adaptive thresholding routine. This routine checks the local stddev and greyscale values around each edge pixel. If the edge pixel is less than 25% above the min value in that local region, it is removed. If the local stddev is very low, that edge pixel is removed (edge is currently on a plateau). Basically we are trying to remove pixels that are not actually on the edge. This routine goes through 10 iterations, optionally removing one pixel deep around the outside of the mask each time.
 – Remove small holes and indents with morphological closing
• Remove the small dot that is outside of the circle – look for a small separate region that is at the max or min y, and either has a high median value or is very small compared to the biggest three region sizes. This dot was confusing the estimated radius and circle finding algorithms.
• Find the edges of the mask, use correct morphological filter to not double count diagonal pixels
• Remove the middle points of the circle (sometimes these were very close to the outside edge and confused the algorithm). To do this first find the approximate center of the circle using the min x, max x, min y, max y. Check to make sure the min y and max y are available at ~ the correct x location. The top or bottom is often missing, if so use the available one and the radius from the x dir. Once you have the center, find the distances and angles from all points to the center. Remove all points with the same angle except the one with the maximum distance from the center.
• Create a big range for possible radii centered on max(max x – min x, max y – min y)
• Find all circles that fit the edges (to 90% of best fit) using hough circles internet routine: circlehoughlink, pass in radii array.
• Find the max gap size, average gap density and stddev gap density for all circle candidates. These are based on the distances between overlapped pixels of the circle candidate and the outlined edge, each such distance is called a gap. The ideal candidate would have a max gap size of 0. The gap density is the number of overlaps over the total number of pixels in the nearest 1/6th of the circle. This is implemented with a smooth operation. The ave gap density should be high for a good match and the stddev of the gap density should be low – we want the best fit circle to fit equally well all the way around the edge contour.
• Choose the final circle: choose the best hough circle if it has a good enough stddev gap density and there isn’t a candidate with both better stddev and ave gap densities. Otherwise look for circles with good stddev and ave gap densities and choose the one with the best ave. If there aren’t any of these, go with the circle with the minimum stddev gap density, however if that one has an extremely low ave density go with the first hough circle.
Outline of Pointing/Magnification estimation

• Find the rest of the pinholes by template matching with the one we located exactly.
 – Compute metrics about the autocorrelation peaks to compare with candidate peaks:
 • Pedestal: Number of pixels in the top 80%
 • Normalized autocorrelation region
 • Formfactor (indicates shape)
 – Compute evaluation tests on each subsequent template match peak:
 • Ratio between the auto pedestal and this peaks’ pedestal (should be between 1 and 10)
 • Mean squared error between the normalized region and the auto normalized region (should be low, <.3)
 • Ratio between the auto formfactor and this peak’s formfactor (should be close to 1)
• Identify the distances between pinholes & find magnification
 – Search through all pairs of points, identify vertical pairs and horizontal pairs. If a point doesn’t have
 a pair then that pinhole location is invalid
 – Identify exactly which point in the square each pinhole location is. A third point in the middle will not
 be considered.
 – Ave distances between all valid pairs and use that to calculate the magnification.
• Identify the center point of the pinholes and find pointing
 – If you have two corner points use those to compute the center
 – Otherwise, use trigonometry and the two side points to compute the center. Assume the length of
 the missing direction equals the distance between the two points.
 – Pointing offset will be difference between this center and the center of the original image (this image
 will have the active region cut out).
Novel signal & image processing is needed to turn raw diagnostic data into the key performance metrics.
Two critical components of automated analysis are supporting NIF operations and maintaining calibration data

- **Handling operational off-normal data**
 - Diagnostic raw data may be different than expected due to hardware redesigns, detector malfunctions, abnormal shot types, noise, etc.
 - Review one example: Gamma Reaction History (GRH) peak suppression discrepancies between channels.

- **Calibration maintenance design**
 - Analysis relies on a gargantuan amount of calibration data
 - Review example of oscilloscope time base calibration for DANTE
 - Review scope of the maintenance feat

Responsible Scientist (RS)
- Initiates Updates
 - New Locos: prompt & report will help ensure that RS or RI initiates maintenance calibration updates

RS Oversees Reformatting, with Support from SAVI
- Use manual reformat for Scales or individual H5s
- SAVI can create and use efficient tool(s) to create bulk H5 waveform data

RS Oversees Uploads with Support from SAVI
- Final dataset using new self-documenting calibration report tool
- Submit Locos Web form
- New SAVI resource to help

RS Approves
- Determines effective dates
- Submit Locos Web form
- Send notification

RS Verifies
- Reviews analysis from dashboard
- Use Archive Viewer to view results & version history
- SAVI assistance needed when installing new parts
Partnering with scientific diagnostic teams to define calibration maintenance flow and design tools

Responsible Scientist (RS) Initiates Updates
- New Locos prompt & report will help ensure that RS or RI initiates maintenance calibration updates

RS Oversees Re-formatting, with Support from SAVI
- Use manual copy/paste for Scalars or individual H5s
- SAVI can create and use efficient tool(s) to create bulk H5 waveform data

RS Oversees Uploads with Support from SAVI
- Find datasets using new self-documenting calibration report tool
- Submit Locos Web forms
- New SAVI resource to help

RS Approves
- Determines effective dates
- Submit Locos Web form
- Send notification

RS Verifies
- Rerun analysis
- Use Archive Viewer to view results & version history
- SAVI assistance needed when installing new parts

Analysis (SAVI) team is instrumental in the process of maintaining calibration data and thereby ensuring the success of target diagnostic algorithm automation and robust accurate results.
Supporting operations, calibration, quality assurance and new analysis automation are the foundation for successful automated target diagnostic analysis.

Key performance metrics:

- **Temperature**:
 - Hot spot temperature
 - Hohlraum radiation temperature
- **Density** – areal density of hot spot
- **Yield** of fusion reaction – total production of neutrons or gammas
- **Velocity** – measure of capsule radius over time
- **Shape** – symmetry of the implosion
- **Timing**
 - Shock timing
 - Bang time – time of peak fusion reaction
- **Preheat** of the ablator

FFLEX analysis reports hot electrons & preheat

Dante analysis estimates radiation temperature

nTOF analysis reports hot spot temp, neutron yield and density metrics

DISC uses camera corrected images

Shape metrics rely on GXD, Ariane, NIS timing and image analyses

VISAR interferometry analysis enables shock timing

Gamma yield depends on GRH analysis

SPBT & GRH analyses report bang time

Operations Support
for changes & off-normal shot data

Calibrations Support
Creation design & maintenance tools

Quality Assurance
Unit and integrated testing

New Analysis & Automation
Automating new diagnostics and furthering existing