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Disclaimer and Auspices

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Auspices
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

“Scary incantations in the wrong hands...”
— From the Collide song Falling Up
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Foldy-Lax Theory

Foldy-Lax theory provides a model of (frequency domain) wave
scattering for a collection of point scatterers

» M. Lax, “Multiple Scattering of Waves", Reviews of Modern
Physics, October 1951, 23(4), pp287-310

» L. L. Foldy, “The Multiple Scattering of Waves: |. General
Theory of Isotropic Scattering by Randomly Distributed
Scatterers”, Pysical Review, February 1945, 67(3 & 4),
ppl07-119

» M. Lax, “The Multiple Scattering of Waves: Il. The Effective
Field in Dense Systems”, Physical Review, February 1952,
85(4), pp621-629
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Foldy-Lax Theory in a Nutshell — |

The integral form of the Helmholtz equation

5 (r, RS W) = kg(w)/dr' G(r, ¥, w) o(r) ¥™(r, R, w),

specialized to point scatterers is
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G, RS, w) = k(@) 3 77 Gl X,w) 01X, Ry, w)
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Foldy-Lax Theory in a Nutshell — Il

The total field as observed at the scatterers must be known:
P, RIS, w) = kg (w) > 75 G(r, Xj,w) (X, R, w)
J
The total field due to source n is given by
1/Jt0t(r> Rirc’ w) — winc(n Rirc7 w) +
B(w)> 7 Gr, X, w) (X, R, w)
J

Evaluate this at r = X; (excluding the self-scattering terms where
the Green function diverges):

PN X;, R w) = (X, Ry, w) +
Bw) Y 7y Gy ) 61 (X, R, )

J#i L]
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Foldy-Lax Theory in a Nutshell — Il

We cast this into the form of a matrix equation,
¢t0t(Xj, Rirc,w)—
k(@)Y 7 G(X X w) 9 (X, Ry, w) = 9™ (X, RS, w),

J'#i
[1 = Rw)G(w)T] §(w) = §(w)
—— ——
A X b
solve
btw) = [ = KW)CW)T] ™ dr(w)

and back substitute,
P R, w) = kg (w) Y 7y G(r, X w) (X, R, w)
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Aside on Stability

For a non-diverging solution, require

K 1G(@)Tll, <1

This bounds the scattering amplitudes,

4

T RW)

where Rpyin is the minimum scatterer separation and J is the
number of scatterers.
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The Green Function

Nothing has been said of the Green function.

- -1 _.
Ptw) = [1- B G T| T drw)
wscat(r7 Ri;rcv OJ) kg(w) Z Tj G(rv Xja w) ?ﬂmt(xj, Rirca w)
J

Consider a two planar layer environment:

» 4 5143
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Sommerfeld Integral

Deriving the Green function, G(r, X;,w), for a two planar layer
medium requires solving a Sommerfeld integral such as,

,. 1
Glri2) = 55 /dkL o(k1,w)

where
Yo(kL,w) =/ kg(w) — ki

ei’yo(kJ_,UJ)Z eikJ_'rJ_

which is difficult.
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A Fast Sommerfeld Integral Solver

A. Hochman, “A Numerical Methodology for Efficient
Evaluation of 2D Sommerfeld Integrals in the Dielectric
Half-Space”, IEEE Trans. Antennas and Propagation,
February 2010, 58(2), pp413-431.

» MATLAB function, “Numerically-Determined
Steepest-Descent Path (NDSDP)": ndsdp ()

> http://web.mit.edu/hochman/wuw/

v

> Put the ndsdp() function into the planar layer Green function

» Put the Green function into the Foldy-Lax solver

The result is a fast-ish MATLAB two-layer Foldy-Lax solver: It must
perform two ndsdp() calls for each scatterer for each frequency.
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http://web.mit.edu/hochman/www/

Numerically-Determined Steepest-Descent Path

For each frequency, Numerically-Determined Steepest-Descent
Path (ndsdp.m) solves,
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Examples
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Simulated Verification
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Aluminum/Copper Laye
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Aluminum /Copper Layer
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Buried Resolution Phant
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Buried Resolution

Object Field Time Series

Scattered Field Time Series
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» Foldy-Lax is a full point scatterer scattering theory with the
only concession being that of no self-scattering.

» The theory is derived independently of the Green function.

» A Sommerfeld integral solver is used to create a two-layer
Green function for a Foldy-Lax scattering code.
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