Recent Advances in Gravity Sensor Array Signal Processing

CASIS Workshop May 21, 2014

Hema Chandrasekaran, David H. Chambers, Stephen B. Libby Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory

LLNL-PRES-654610

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Gravity Sensor Project

Instrument: Basic Gravimeter / Gradiometer Configuration

A. Peters, K. Y. Chung and S. Chu, High-precision gravity measurements using atom interferometry, Metrologia, 2001, 38, 25-61

Lawrence Livermore National Laboratory

Measurement: Gradiometer Response

Gradiometer response to a vehicle moving along a trajectory with parameters { v_a , θ , δx , t_0 } is modeled as a sum of responses to a set of point masses { m_i } at positions { r_i } at time t

$$\mathbf{F}_{a}\left(\mathbf{r}-\mathbf{r}_{a}(t)+\Delta\mathbf{r}_{c}\right)=-\sum_{i=1}^{M}\frac{Gm_{i}\left(\mathbf{r}-\mathbf{r}_{a}(t)+\Delta\mathbf{r}_{c}\right)}{\left|\mathbf{r}-\mathbf{r}_{a}(t)+\Delta\mathbf{r}_{c}\right|^{3}}$$

$$\Delta \mathbf{r}_c = f\left(v_a, T_1, T, \mathbf{v}\right)$$

 $\mathbf{r}_{a}(t)$ point mass location in sensor coordinates M total number of point masses

$$\Delta \varphi(\mathbf{r},t) \propto \mathbf{r}_{a}$$
$$J_{\Lambda a}(\mathbf{r},t) = \Delta \varphi(\mathbf{r}+2\Delta \mathbf{r},t) - 2\Delta \varphi(\mathbf{r}+\Delta \mathbf{r},t) + \Delta \varphi(\mathbf{r},t)$$

3 gravimeter locations : \mathbf{r} , $\mathbf{r} + \Delta \mathbf{r}$, $\mathbf{r} + 2\Delta \mathbf{r}$

Gravimeter Model Parameters

Atom cloud launch velocity v m/s upward Sensor interrogation time T sec Vehicle velocity: Known Vertical sensors

Measurement: Basic portal configuration

Work on portal configurations with sensors on the sides and top showed most significant signals come from lower (buried) sensors

Measurement: Portal Configuration and Vehicle Trajectory

Assume known vehicle moves past array at constant speed < 5 MPH

Parameters describing trajectory of vehicle are

- $\boldsymbol{\theta}$ Angle between vehicle path and array normal
- + δX Offset between vehicle path and array center
- t₀ Time when origin of mass co-ordinates crosses the portal x-axis
- v Constant velocity of vehicle

In principle, these parameters could be estimated from sensor data

Gravity Gradiometer Signal Processing: Earlier Work

Gravity Gradiometer Signal Processing: Recent Advances

Extract threat mass signal by removing sensor response to vehicle Detect 50 kg mass with $P_D > 95\%$ and $P_{FA} < 10^{-3}$ for all 8 vehicle models tested

Locate mass to within 5% of vehicle length and width, and ~10% of vehicle height

Estimate mass to ~20%

Lawrence Livermore National Laboratory

°Ľ

Estimating Vehicle Trajectory: How well do we need to estimate the vehicle trajectory? (1/2)

Vehicle (F250)

Estimating Vehicle Trajectory: How well do we need to estimate the vehicle trajectory? (2/2)

MSE is very sensitive to velocity and T0 errors

- 4D search space
- Multiple Local Minima

Estimating all 4 trajectory parameters is computationally challenging

- Optimization algorithms do not guarantee the best solution
- Template matching requires either ~250MB of storage for each vehicle type or impractical CPU requirements

Estimation of Vehicle Trajectory: 4D to 2D

Simplify 4D Trajectory Parameter Estimation Problem to 2D

- Shift sensor data to known time origin (when the signal exceeds 5 σ of instrument noise RMS)
- Obtain velocity from an alternate sensor to within 0.1MPH
- Estimate θ and X-offset using MMSE with $\ \ -3^\circ < \theta < 3^\circ, \ -0.75m < x < 0.75m$

What does it does it take solve 2D parameter estimation problem?

- Template matching to generate all possible trajectories and sensor responses
- Typical number of templates for each vehicle = 105 (-3°< θ < 3°, -0.75m < x < 0.75m, $\Delta\theta$ = 1°, Δ x=0.05m)
- Typical time taken to estimate θ and X-offset using MMSE is ~2 minutes in Matlab

Estimate Vehicle Trajectory via Template Matching: Quadratic Error Surface of Solution Neighborhood

Vehicle entering at θ = -2.9° and x-offset=0.02m.

Coarse template matching leads to solution neighborhood θ = -3° and x-offset=0.05m.

Fine matching within the solution neighborhood leads to the closest match.

Vehicle entering at θ = -2.9° and x-offset = -0.72m. Coarse template matching leads to solution neighborhood θ = -1° and xoffset= -0.7m.

Fine matching within the solution neighborhood leads to the best solution.

Lawrence Livermore National Laboratory

13 **L**

Extract Point Mass Signal from Residual

Residual when no mass is present

Residual when a 50 Kg mass is present

Detect Mass: Detection Statistic Computation

Residual Signal Characteristics

- Exact form of threat mass signal is unknown
- Signal duration is very short (2 samples or less for 50 Kg Mass)

Noise Characteristics

- All channel measurements are independent and have almost equal variance
- Noise from all channels is approximately Gaussian

Detection Statistic Computation

- Use a sliding window one-way ANOVA to compute the F-ratio. F ratio and signal-to-noise power ratio are related by $F = 1 + P_{SNR}$
- Apply a monotonic transformation to computed F-ratio followed by a log transform.

Mass Detection Performance: ROC Curves (1/2)

16 **IL**

Mass Detection Performance: ROC Curves (2/2)

Estimate Mass Location, Magnitude from Residual Signal (1/4)

Mass estimation: Uncertainty in Height / Mass Estimation (2/4)

Mass estimation: Uncertainty in Height / Mass Estimation (3/4)

Lawrence Livermore National Laboratory

20

Mass estimation from residual signal (4/4): Performance

Preliminary work on effect of "clutter" mass

Add "mass man" in driver's seat: based on 1988 anthropometry report^{*} on male aviators

Distribution of mass estimates for 50 kg point mass in F250

Distribution of mass estimates for "mass man" in F250

Mass man looks like point mass with ~50% of true mass

Both 50 kg point mass and mass man can be located to within 10% of vehicle dimensions

*ANTHROPOMETRY AND MASS DISTRIBUTION FOR HUMAN ANALOGUES Volume I: Military Male Aviators, March 1988, Naval Biodynamics Laboratory P.O. Box 29407, New Orleans, UI 70189-0407

In summary, we can ...

Extract threat mass signal by removing sensor response to vehicle

Detect 50 kg mass with $P_D > 95\%$ and $P_{FA} < 10^{-3}$ for all 8 vehicle models tested

Locate mass to within 5% of vehicle length and width, and ~10% of vehicle height

Estimate mass to ~20%

with the caveat...

No gravity gradiometer prototype has yet been built to verify the results reported here.

