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Rigorous Analysis of Poisson Process Detection

Main Result

Particle detector response – rigorous analysis
Consider (nonnegative) integer-valued random variables x, g, y, with probability 

distributions: {px0,px1,…}, {py0,py1,…}, {pg0,pg1,…}.  Let y be a sum of ‘x’ 
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Detailed Proof  of (1):

The trick is to replace the random sum of (0) by definite sums.

From  probability definition:
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Motivation

This paper is motivated by an NToF analysis in which the neutrons created in

D + T reaction pass through detector(s), filter(s) and amplifier(s). They are modeled

by a counting Poisson process, denoted by x=Poiss(μ), with the Poisson constant

hi h l th ’ t d l d l it i V( )
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identically distributed random variables g . We want to find y in terms of x and g. 

(0)  

We can think about x as the number of particles arriving at a (generalized) 

“detector”; about g as the detector’s response to a single particle, and about y as 

the detectors response (the number of particles  leaving the detector). 

A simple detector with the detection probability p is a special case of the above

where (again from probability definition):
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Poiss(x(u))

μ which equals the process’s expected value and also its variance μ=<x>=V(x).

It turns out that a stochastic signal (in our case the particle counting (Poisson)

process) ends up with different statistical properties after passing through a detector

Detector
Poiss(μ) Poiss(pμ)

Amp
a Poiss(pμ)

A simple detector with the detection probability p is a special case of the above 

with  {pg0,pg1,…} = {1-p,p}.

The corresponding generating functions are:

When x is the Poisson process x=Poiss(μ), its generating function equals:  

Consequently

Therefore the generating function of y equals:
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process) ends up with different statistical properties after passing through a detector

as opposed to passing through an amplifier (or attenuator). Our aim is to provide a

rigorous model for the detection mechanism of Poisson processes as opposed to

amplification/attenuation mechanisms.

Deterministic system - amplifier/attenuator
For an amplifier described by y=a x

we have <y>=a <x> and V(y) = a2 V(x).

When g is the  Bernoulli process {pg0,pg1,…} = {1-p,p} , its generating function is:

Now, we apply the property (proven in the right column)

Therefore, the generating function of y equals:
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Stochastic system - detector
Detectors produce an output to an incoming particle with a certain probability 'p‘

(detection efficiency). At first sight the mechanism seems to be similar to that of

y=ax. We show here that such detector differs from an attenuator with a=p.

Poisson process
Consider a signal modeled by a Poisson process with the Poisson constant

 1( ) sX s e  

(1)

to Poisson and Bernoulli processes:

Consequently

Generating function of  the sum

Indeed, recall that the generating function is defined by the expected value:

thus, the generating function of a sum of n iid random variables                    equals:
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such a process may describe:
i. radioactive decay,
ii. analysis of queueing phenomena (arrival on phone calls to an exchange or

signals in computer communication, arrival of department store customers at a
cashier, departing planes on a runway),

iii. analysis of any sort of accidents (machine failures, breakdowns, errors, etc.),
iv. shot noise in electronic devices.

Let x=Poiss(μ) be a Poisson process, the probability that x = k equals:
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(2)

therefore y is a Poisson process y = Poiss(μp) 
with <y> = p <x> = μp = p V(x) = V(y). 

This result is known in theory of random processes [1,2]. However the published

proofs are either sketchy [1] or abstract [2]. Here we present a detailed and rigorous

proof in the language of elementary probability in hope of making it easily

That  yields
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Its generating function equals:

Substituting pxk we get the explicit formula for Poisson generating function:
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accessible.
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which proves (1).
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