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Quantum Computing Algorithms 
Andreas Baertschi (LANL)

Wednesday, July 31st at 2:00 and Thursday, August 1st at 2:00 

B543 Auditorium, R1001

Schedule posted to Lab calendar – subscribe to receive updates

Dr. Baertschi’s lectures are co-sponsored by the Advanced Simulation and 
Computing Program (LANL) and the Center for Applied Scientific Computing 
(LLNL).

https://casis.llnl.gov/seminars/quantum_information

https://casis.llnl.gov/seminars/quantum_information
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Review: What is quantum computing?

Quantum states:

Classical states:  0 or 1   i.e.  TRUE or FALSE

TRUE and FALSE
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Review: What is quantum computing?

Quantum gates:  move states 

Single qubit gates can be thought of as rotations around different axes
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Review: Adding more qubits
Two qubit quantum gates:  move two qubit quantum states 

A small set of single qubit gates combined with this two qubit CNOT gate 
form a complete set. 

By combining sequences of these gates, every possible quantum state 
can be transformed into every other possible state
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“Dephasing”

Control errors and interactions 
with the environment add random 
perturbations to the state. 

“Decoherence”

Quantum coherence is lost by 
‘measurement’ from environment
TRUE and FALSE becomes 
TRUE   or  FALSE
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+

-

Classical compute and
control system

Quantum classical 
interface

Reproducible,
Isolated quantum system
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Yoctowatts 10-24 W

10-3 K

300 K
~Meters

10-10 to 10-6 M

~Kilowatts 103  W

• Quantum limited 
amplifiers

• Isolators / circulators
• Filters

• Cryogenics
• High Vacuum
• Multiscale Materials
• Vibration isolation
• EM Shielding 

High speed electronics RF engineering / photonics

Micro / nanofab, 3D integration
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1) Choose a quantum system  (easy part)
• Solid state:  Superconducting circuits, Semiconductor 

quantum dots, Defect centers in materials, Topological 
materials

• Nature’s made: Ions, neutral atoms, individual electrons, 
nuclear spin 

2) Isolate it from the classical environment (hard)
• Vacuum, Cryogenics, EM shielding, Vibration isolation..

3) Find a way to control it reliably  (while isolated ???)
• Provide signals to control quantum dynamics
• Measure the quantum state
• Apply feedback to correct errors
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Multiple waveform generators 
drive individually connected 
qubits.

Single classical control channel 
with frequency multiplexed 
signal drives all qudits.
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https://en.wikipedia.org/wiki/Trapped_ion_quantum_computer

Quantum 
information is  
stored & 
manipulated in 
states of individual 
coupled ions.

https://en.wikipedia.org/wiki/Trapped_ion_quantum_computer
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Scalable ion traps for quantum information processing
New Journal of Physics 12(3) · 2010

https://www.researchgate.net/journal/1367-2630_New_Journal_of_Physics
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Phys. Rev. A 89, 022317 (2014) 
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Four superconducting transmon 
qubits, four quantum busses, 
and four readout resonators 
fabricated by IBM

(npj Quantum Information 2017)

https://en.wikipedia.org/wiki/Superconducting_quantum_computing

https://en.wikipedia.org/wiki/Superconducting_quantum_computing
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Superconducting (3D Transmon)

Lots and lots of design freedom…
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Superconducting 
(3D Transmon + coherent phonon + …)
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Google “Bristlecone”  
nearest neighbor layout

Scaling up from a single qubit

16-qubit backend: IBM Q team 

Layout of a surface-code 
fabric, Versluis et al. Connectivity of Rigetti 19Q 

Major challenges in routing signals..

Coulomb interaction is long range so underlying physical Hamiltonian is 
inherently nonlocal.  Canonical design seeks to minimize ‘crosstalk’ 
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An IBM Q cryostat used to keep IBM’s 50-
qubit quantum computer cold in the IBM 
Q lab in Yorktown Heights, New York.

Rigetti Computing 
“Acorn” with RF 
connections. 

Intel 49 qubit 
quantum test chip 
“Tangle Lake,” with 
RF connections. 
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Classical control electronics / photonics in QC

Measure

ComputeSynthesize

• Error syndrome 
decoding

• Online system 
learning & 
characterizationUltra-low 

latency

Requires High 
• Net Bandwidth 
• Dynamic range
• Phase stability
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Nature Communications 7, 11526 (2016)

Time to measure, calculate 
error and send correction must 
be less than time for new 
errors to occur.
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Quantum Computing: Progress and Prospects National Academy (2019)

https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects
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Superconducting:
• LLNL testbed!  ~6 qubits experimental!
• IBM 20 qubits (~6 effective) robust cloud access
• Rigetti 16 qubits (~5-6 effective) robust cloud access
• Google ?qubits (access by invitation)
• AQT ASCR testbed 8 qubits (access by proposal)

Trapped Ions
• IonQ 11 qubits (~11 effective) (access by invitation)
• Sandia ASCR testbed ~16 qubits (access by proposal)
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Equally spaced energy levels
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Junction phase

Superconductor
(Aluminum)

Superconductor
(Aluminum)

Insulator (AlOx)

A Quantum Engineer's Guide to Superconducting Qubits
https://arxiv.org/abs/1904.06560
Introduction to quantum electromagnetic circuits
International Journal of Circuit Theory and Applications
Volume 45 Issue 7, July 2017 
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