Quantum Sensing and Information Processing

Lecture 2: Quantum Devices — Focus on LLNL Research

Steve Libby Jonathan L DuBois

LLNL-PRES-778106

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Schedule Update

Quantum Devices

Thursday, May 30th at 2:00, B453 R1001, Armadillo Room

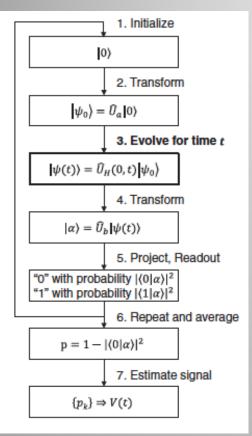
Application: Sensing with Quantum Devices

Thursday, June 27th at 2:00, B543 Auditorium, R1001

Control of Quantum Devices

Tuesday, July 2nd at 2:00, B132S R1000, GS/WCI Auditorium

Error Modelling


Tuesday, July 9th at 2:00, B543 Auditorium, R1001

Application: Quantum Computation

Tuesday, July 23th at 2:00, B543 Auditorium, R1001

https://casis.llnl.gov/seminars/quantum_information

Quantum Sensing: Detection, Interferometry, Noise* - Requirements!

Basic steps in the quantum sensing process

How does quantum noise limited sensitivity drive our 'quantum device' design?

Cold atom interferometry example

Ramsey Interferometry

$$|\psi_0\rangle = |+\rangle \equiv \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \implies |\psi(t)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{-i\omega_0 t}|1\rangle) \implies |\alpha\rangle = \frac{1}{2}(1 + e^{-i\omega_0 t})|0\rangle + \frac{1}{2}(1 - e^{-i\omega_0 t})|1\rangle$$

$$p = 1 - |\langle 0 | \alpha \rangle|^2$$

= sin²(\omega_0 t/2) = $\frac{1}{2} [1 - \cos(\omega_0 t)]$

Quantum Projection Noise Limited Sensitivity

$$\delta F_{\min} = \frac{h\delta\varphi}{\mu T} \qquad \delta F_{\min} = \frac{h\delta\varphi}{\mu T_2} \sqrt{\frac{T_2}{T}} = \frac{h}{\mu\sqrt{T_2TN}}$$

*Quantum sensing, C. L. Degen, F. Reinhard, P. Cappellaro, RMP, 89, 035002, (2017).

Atomic Sensors – a review, J. Kitching, S. Knappe, E. A. Donley, IEEE Sensors, 11, 9, 1749, (2011).

Squeezed atomic states and projection noise in spectroscopy, D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A, vol. 50, pp. 67–88, (1994).

Laser Cooled Atoms and Quantum Coherence Give Rise to Sensitive Interferometers

Laser cooling techniques are used to achieve the required velocity (wavelength) control for the atom source.

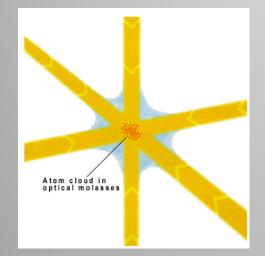


Image source:www.nobel.se/physics

Laser cooling: Laser light is used to cool atomic vapors to temperatures of ~10⁻⁶ deg K.

The Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with laser light"

Steven Chu Claude Cohen-Tannoudii

Ø

USA

Stanford

University Stanford, CA, USA

1948 -

William D. Phillips

Ø Ø USA France Collège de France

Paris, France

Supérieure

1933 -

Paris, France

National Institute of Standards and and École Normale Technology Gaithersburg, Maryland, USA 1948 -

Laser Cooled Atoms Enable Sensitive Inertial Sensors – at 10⁻⁶ K, cesium de Broglie wavelength is ~ $h/(MkT)^{1/2}$ ~ .1 µm. (compare Overhauser's 1970's neutrons - h/(mkT)^{1/2}~1.445 Å)

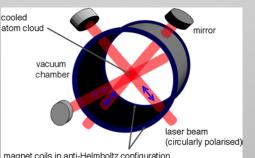
• *M. A. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181, (1991) & Appl. Phys. B 54, 321, (1992)

B. Young, M. Kasevich, and S. Chu, in Atom Interferometry, Academic Press, (1997)

Three key physics requirements for cold atom interferometry

- Laser cooling* : Doppler, polarization gradient, recoil limit
 - 2 level Doppler temperature limit (T ~ 125 μ Kfor Cs)
 - Polarization gradient cooling / optical 'molasses.' (T ~ 2.5 μ K)

 $k_B T_D = \frac{\hbar \Gamma}{2}.$


Recoil limit

 $k_B T_R = \frac{\hbar^2 k^2}{2M}$

Magneto Optical Trap*

- Roles of stabilization to < 10 MHz, 100 kHz, and 1 kHz.
- Pound Drever Hall technique
- see J. Dalibard & C. Cohen-Tannoudji, JOSA B, (1989), 6, 11

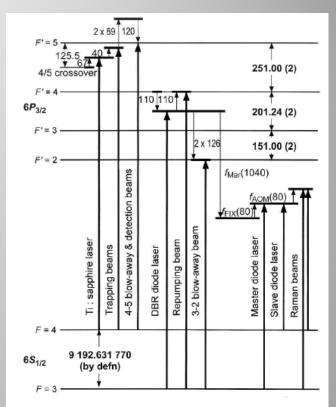
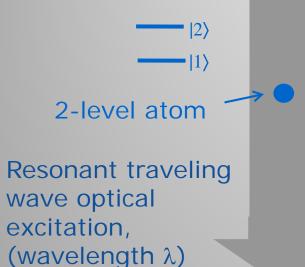


Figure 6. Atomic energy levels and laser frequencies. All laser frequencies are referenced either to the $F = 4 \leftrightarrow \hat{F} = 4 / F' = 5$ "crossover" resonance or the $F = 3 \leftrightarrow F' = 4$ resonance. Numerical values are in megahertz.


Key Cs transitions: Peters, Chung, and Chu, Metrologia, (2001), 38, pp. 25-61.

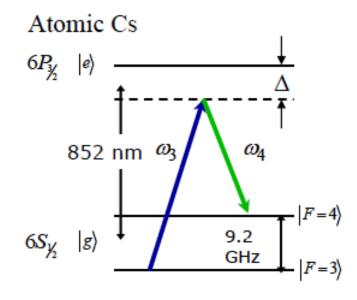
* H. Metcalf and P. van der Straten, "Laser Cooling and Trapping," Springer, (1999).


(Light-pulse) atom interferometry builds on laser cooled atoms ($T \le 10^{-6}$ K)

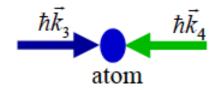
Resonant optical interaction

Recoil diagram

Momentum conservation between atom and laser light field (recoil) leads to spatial separation of atomic wavepackets.


780 nm laser stabilized to < 1 kHz can measure the atom's position ~ $1:10^{12}$. Atomic deflection due to 25 kg mass at a distance of 1 meter over $\Delta t \sim .25$ sec is $\sim .5$ Å.

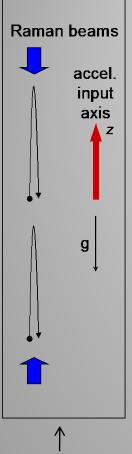
Semi-classical phase shift ~ $n\hbar k\delta gT^2$ High momentum transfer n >> 2.



Optically stimulated Raman transitions – Rabi oscillations between hyperfine states - advantages for quantum interferometry!

Level scheme

Excitation Geometry


Doppler sensitive configuration •k₃, k₄ counter-propagate

Ground states

Avoid spontaneous emission
Excitation between magnetic field insensitive sublevels

Large detuning D •Effective 2-level system $F=3, m_f=0 \leftrightarrow F=4, m_f=0$ •Effective traveling wave excitation $\mathbf{k}_{eff} = \mathbf{k}_3 \cdot \mathbf{k}_4 \sim 2\mathbf{k}_3$ •Effective transition frequency $\Delta \omega_{eff} = \omega_3 \cdot \omega_4$

Two Photon Raman Atomic Fountain Interferometer – Semi-classical Gravitational Phase Shift Analysis & Gradiometer Response

Cooled, (initially F=3) cloud of ~ 10^8 alkali atoms. Unperturbed launch trajectory: v_0 ~ 2- 3 m/sec. t_1 = 45 ms. T~ 250 ms. z_{02} $z_{01} \sim .5$ m

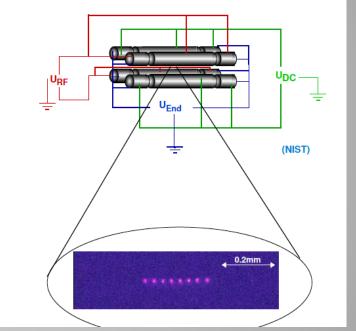
 Semiclassical treatment: Mach-Zehnder steps are in 'sudden' approximation. O(T²) phase shift is solely due to light-atom interaction (k.δx) (higher order has Coriolis cross couplings, etc.)

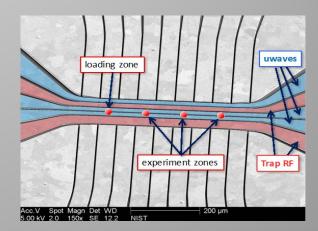
• Individual interferometer gross phase ~ k_{eff} gT² ~ 10⁸ radians (due mainly to the earth).

• Interferometer differences $\delta \phi^{(1)} - \delta \phi^{(2)}$: 1 to 10⁻⁴ rad. (10⁻³ rad ~ 2 10⁻⁹/sec²). Shot noise limited.

$$\begin{split} \phi_{tm} &= \vec{k}_{eff} \delta \vec{\phi}, \\ \delta \vec{\phi} &= \delta \vec{x} \left(t_1 + 2T \right) - 2\delta \vec{x} \left(t_1 + T \right) + \delta \vec{x} \left(t_1 \right) \end{split}$$

$$\delta \vec{x}\left(t\right) = \int_{0}^{t} dt' \left(t - t'\right) \delta \vec{g} \left[\vec{x}_{0}\left(t'\right)\right]$$

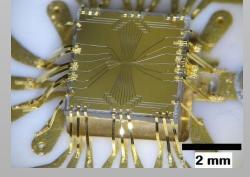

$$r(x) = \frac{\delta \phi_z^{(2)} - \delta \phi_z^{(1)}}{T^2 (z_{02} - z_{01})}$$

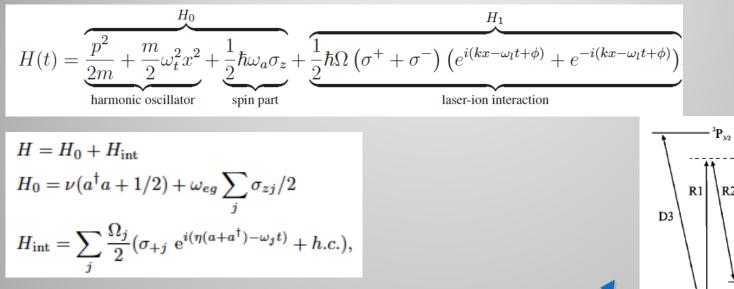

Paired atom fountains 'interrogated' by common Raman lasers

Quantum corrections computed.

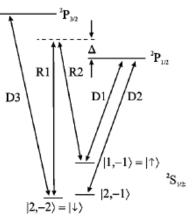
Ion traps: implementing controlled quantum logic

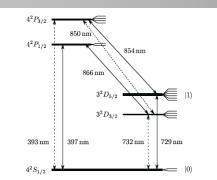
- Divincenzo quantum computing criteria met:
 - Scalable, well characterized qubits (e.g. ion hyperfine states in Wineland ⁹Be⁺ scheme).
 - Ability to initialize to |0000..>
 - Long decoherence time.
 - Universal gate set.
 - Qubit specific, quantum efficient measurement capability.
- $\label{eq:constraint} \begin{array}{l} \mbox{Energy scales: } \omega_{\rm recoil} \sim 50 250 \mbox{ kHz, } \omega_{\rm axial} \sim 2\text{-}10 \\ \mbox{MHz, } \Omega_{\rm Rabi} \sim .1 \mbox{ to } 10 \mbox{ MHz, } \omega_{\rm hyperfine} \sim 1.25 \mbox{ GHz} \\ \mbox{(}^9\mbox{Be}^+ \mbox{ S state}), \mbox{ } \omega_{\rm optical} \sim 729 \mbox{ nm (}^{40}\mbox{Ca}^+) \end{array}$

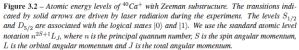



 $(^{9}\text{Be}^+\text{ S state}), \omega_{\text{optical}} \sim 729 \text{ nm} (^{40}\text{Ca}^+)$

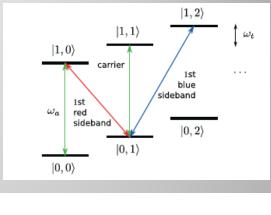
Laser Gradient: $\propto \eta \Omega$

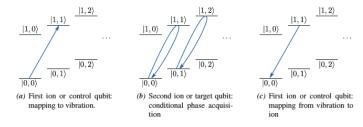

$$\eta = k_z(\sqrt{\hbar/2m\omega}) < 1$$




Ion trap quantum dynamics – effective Hamiltonians

- Ion cooling analogous to neutral cold atoms -here Doppler cooling followed by 'phonon sideband' cooling.
- Wineland et. al. hyperfine qubit in ⁹Be⁺ analogous to neutral alkali (Cs or Rb) ground state hyperfine dynamics.
- Blatt et. al. scheme in ⁴⁰Ca⁺ qubit is on quadrupole transition.




Cirac-Zoller gate (1995) – universal, but requires cooling to motional ground state

- Couplings between qubits via phonon 'bus'
- Requires cooling to motional ground state.
- Laser couplings to side bands goes like Lamb-Dicke parameter (gradient).

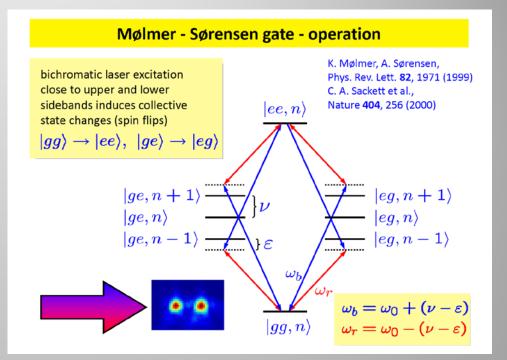
Laser Gradient: $\propto \eta \Omega$

$$\eta = k_z(\sqrt{\hbar/2m\omega}) < 1$$

Figure 3.6 – Composite pulses scheme for a controlled phase gate. The internal state of the control ion is mapped to the vibrational quantum state (a), the target qubit acquires a phase flip (b) conditioned on the vibrational mode and the motion is mapped back to the control ion (c). Enclosed between two $\pi/2$ -carrier rotations on the target qubit this gives a controlled-NOT gate.

The development of the basis states goes according to

$\left 0 ight angle\left 0 ight angle\left 0 ight angle$	\rightarrow	$-i\ket{1}\ket{0}\ket{1}$	\rightarrow	$i\left 1 ight angle\left 0 ight angle\left 1 ight angle$	\rightarrow	$-\left 0 ight angle\left 0 ight angle\left 0 ight angle$	
$\left 0 ight angle\left 1 ight angle\left 0 ight angle$	\rightarrow	$-i\left 1 ight angle\left 1 ight angle\left 1 ight angle$	\rightarrow	$i\left 1 ight angle\left 1 ight angle\left 1 ight angle$	\rightarrow	$-\left 0 ight angle\left 1 ight angle\left 0 ight angle$	(3.28)
$\left 1 ight angle\left 0 ight angle\left 0 ight angle$	\rightarrow	$\left 1 ight angle\left 0 ight angle\left 0 ight angle$	\rightarrow	$-\left 1 ight angle\left 0 ight angle\left 0 ight angle$	\rightarrow	$-\left 1 ight angle\left 0 ight angle\left 0 ight angle$	(3.28)
$\ket{1}\ket{1}\ket{0}$	\rightarrow	$\left 1 ight angle\left 1 ight angle\left 0 ight angle$	\rightarrow	$\ket{1}\ket{1}\ket{0}$	\rightarrow	$ 1\rangle 1\rangle 0\rangle.$	


This realizes a controlled phase gate (up to a global phase factor of -1). To make this a controlled-NOT gate this sequence can be enclosed by a $R^{\text{car}}(\frac{\pi}{2}, -\frac{\pi}{2})$ (beforehand) and a $R^{\text{car}}(\frac{\pi}{2}, \frac{\pi}{2})$ pulse (afterwards).

The Mølmer-Sørensen (bichromatic) gate is 'heat resistant!'

- MS-gate effective Rabi frequency is independent of the ion phonon occupation.
- Interference of different orderings of the ion excitation paths is key.
- Geometric phase gates similar (Milburn et. al.)
- Gate speed is an issue (optimality in the presence of differing noise sources)
- Magtraps vs. laser driven traps

$$\left(\frac{\tilde{\Omega}}{2}\right)^{2} = \frac{1}{\hbar^{2}} \left| \sum_{m} \frac{\langle een|H_{\text{int}}|m\rangle\langle m|H_{\text{int}}|ggn\rangle}{E_{ggn} + \hbar\omega_{i} - E_{m}} \right|^{2}$$

 $-\frac{(\Omega \eta)^2}{2(\nu - \delta)}$

Quantum sensing – General

Quantum sensing, C. L. Degen, F. Reinhard, P. Cappellaro, RMP, 89, 035002, (2017).

Atomic Sensors – a review, J. Kitching, S. Knappe, E. A. Donley, IEEE Sensors, 11, 9, 1749, (2011).

Squeezed atomic states and projection noise in spectroscopy, D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A, vol. 50, pp. 67–88, (1994).

Cold Atoms / Atom Interferometry (I)

Laser Cooling and Trapping, H. Metcalf and P. van der Straten, Springer, (1999).

Atom Interferometry, Paul R. Berman ed., Academic Press, (1997).

Neutral atomic beam cooling experiments at NBS, Phillips, W. D., J. V. Prodan, and H. J. Metcalf, in *Laser- Cooled and Trapped Atoms*, edited by W. D. Phillips (Natl. Bur. Stand, Washington, DC), Spec. Publ. 653, p. 1., (1983).

Laser cooling below the Doppler limit by polarization gradients: simple theoretical models, Dalibard, J., and C. Cohen-Tannoudji, 1989, J. Opt. Soc. Am. B 6, 2023.

General Quantum Sensing References – Cold Atoms II

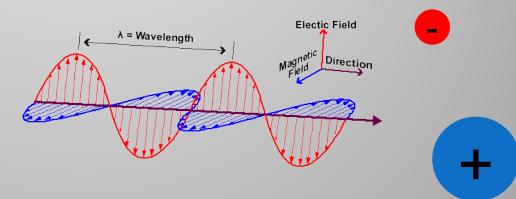
Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure, Chu, S., L. Hollberg, J. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. **55**, 48., (1985).

Atomic motion in laser light, Cohen-Tannoudji, C., in Fundamental Systems in Quantum Optics, edited by J. Dalibard, J.-M. Raimond, and J. Zinn-Justin (North-Holland, Amsterdam), p. 1. (1992).

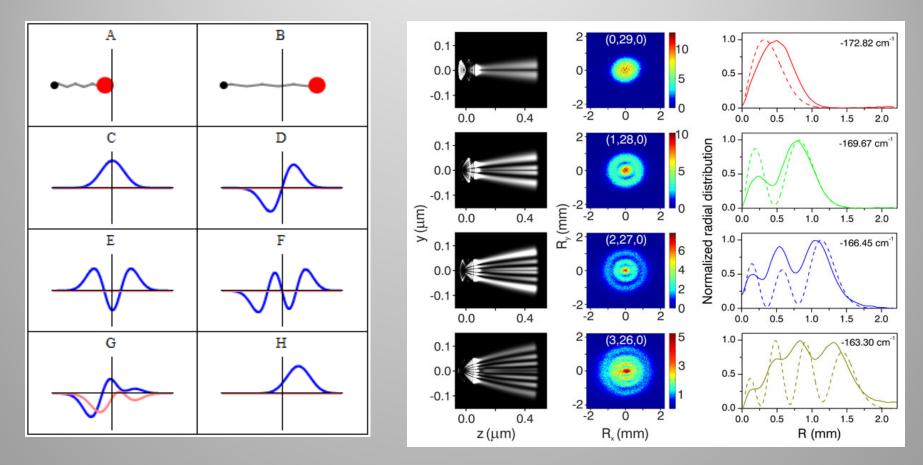
Atom Interferometry using stimulated Raman pulses, M. A. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181, (1991).

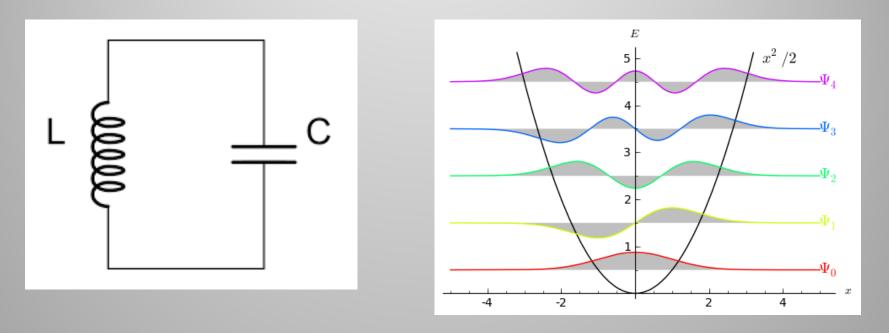
Measurement of the gravitational acceleration of an atom, M. A. Kasevich and S. Chu, Appl. Phys. B 54, 321, (1992).

Precision Atom Interferometry with Light Pulses, B. Young, M. Kasevich, and S. Chu, in *Atom Interferometry*, Paul. R. Berman, ed., Academic Press, (1997).


High-precision gravity measurements using atom interferometry, A. Peters, K. Y. Chung, and S. Chu, Metrologia, (2001), **38**, pp. 25-61.

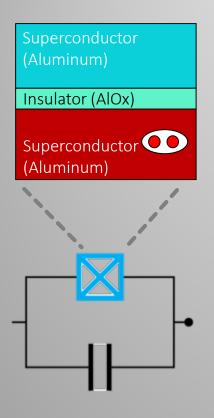
Matter – Wave Interferometers, A Synthetic Approach, C. J. Borde, in Atom Interferometry, Paul. R. Berman, ed., Academic Press, (1997).

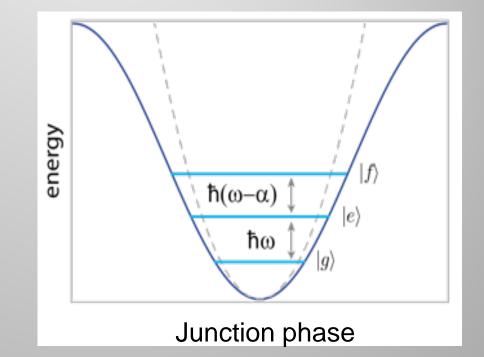

Stepping back: ingredients for a quantum device


Quantum oscillators

'Quantum microscope' peers into the hydrogen atom (Physics World 2013)

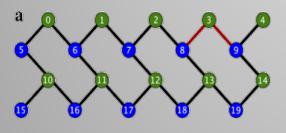
Quantum circuit oscillators?

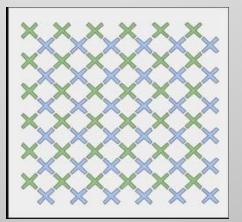

Equally spaced energy levels

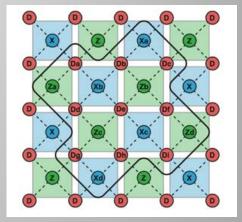

$$\omega_0 = rac{1}{\sqrt{LC}}$$

Lawrence Livermore National Laboratory

The importance of being nonlinear


A Quantum Engineer's Guide to Superconducting Qubits https://arxiv.org/abs/1904.06560 Introduction to quantum electromagnetic circuits International Journal of Circuit Theory and Applications Volume 45 Issue 7, July 2017


Scaling up from a single qubit


16-qubit backend: IBM Q team

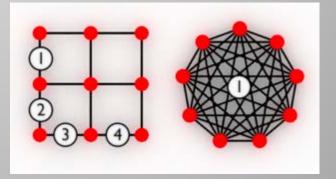
Connectivity of Rigetti 19Q

Google "Bristlecone" nearest neighbor layout

Layout of a surface-code fabric, Versluis et al.

Coulomb interaction is long range so underlying physical Hamiltonian is inherently nonlocal. Canonical design seeks to minimize 'crosstalk'

Connectivity and Hilbert space traversal times

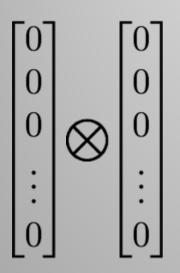

Typical undriven Hamiltonian for superconducting qudits / qubits:

$$H_0 \approx \sum_{i}^{N} \omega_i a_i^{\dagger} a_i - \chi_{ii} a_i^{\dagger} a_i^{\dagger} a_i a_i - \sum_{j \neq i}^{N} \chi_{ij} a_i^{\dagger} a_i a_j^{\dagger} a_j$$

Number of bosonic modes, N, determines number of qubits/qudits. Number of levels addressed, d, in each mode determines qudit size.

 $\omega_i \gg \chi_{ii} \gg \chi_{ij}$

- Single qubit / qudit gates are fast
- Entangling gates are slower



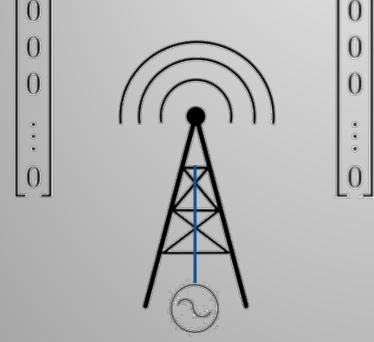
H₀ and choice of gate set strongly influence connectivity / unit time

Qudits, Qubits and software-extensible quantum computing architecture

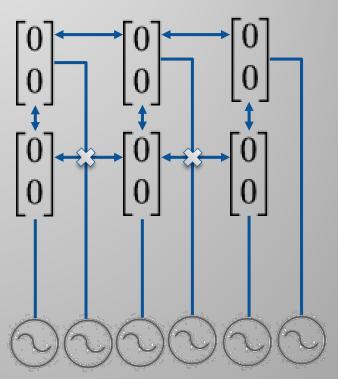
Qudits :: SU(d)^N

Qubits :: SU(2)^N

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \bigotimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} \bigotimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} \bigotimes \begin{bmatrix} 0 \\ 0 \end{bmatrix} \bigotimes \cdots \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

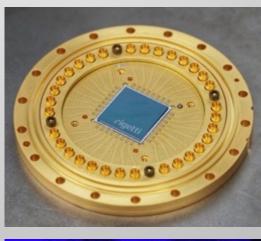

- Increasing d is a *control* problem: $f(t, \alpha)$
- Increasing N is a hardware and fabrication challenge: \hat{H}_0

Effective # of qubits = $N \ln_2(d)$


$$U(T;\alpha) = \int_0^T e^{it(\hat{H}_0 + f(t,\alpha)\hat{H}_c)} dt$$

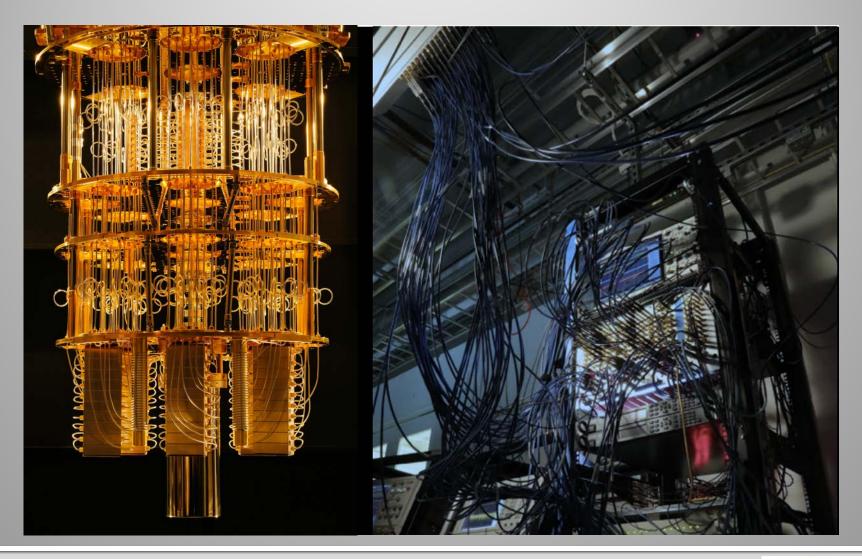
Single control multiple qudit vs single qubit multiple control

Single classical control line with frequency multiplexed signal drives all qudits.


Multiple waveform generators drive individually connected qubits.

Control complexity, cost and fidelity bottlenecks are intertwined

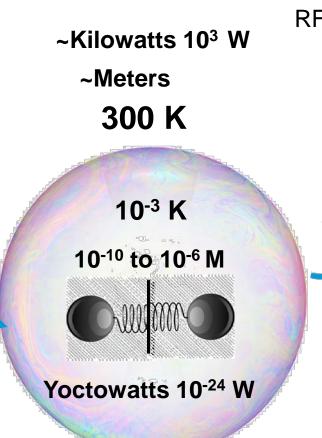
An IBM Q cryostat used to keep IBM's 50qubit quantum computer cold in the IBM Q lab in Yorktown Heights, New York.



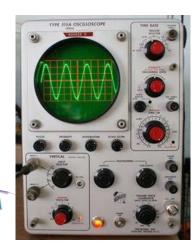
Rigetti Computing "Acorn" with RF connections.

Intel 49 qubit quantum test chip "Tangle Lake," with RF connections.

Quantum device == Systems engineering problem



Systems challenges


High speed electronics

- Cryogenics
- High Vacuum
- Multiscale Materials
- Vibration isolation
- EM Shielding

RF engineering / photonics

- Quantum limited amplifiers
- Isolators / circulators
- Filters

Micro / nanofab, 3D integration

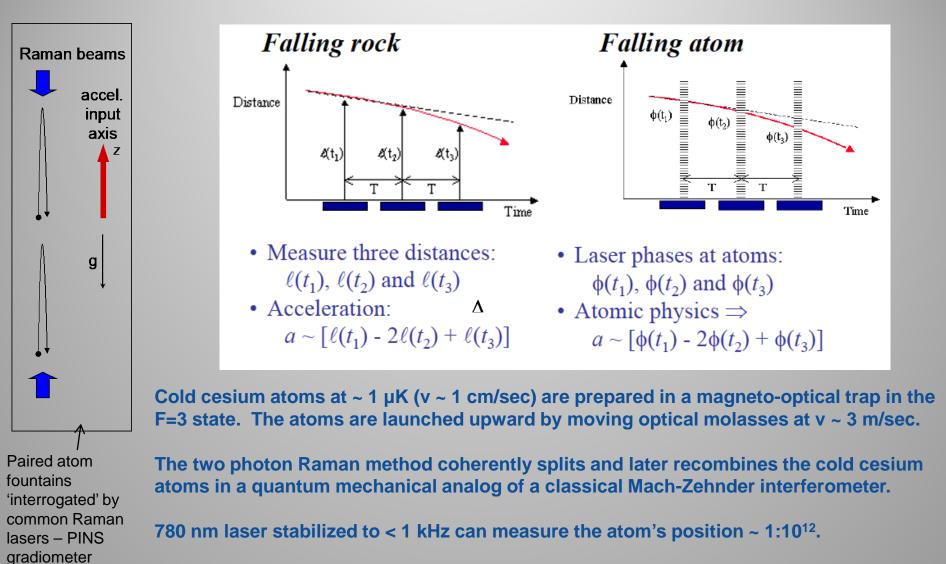
Back-up Slides—Quantum Sensors

LLNL-PRES--778106

Quantum Sensors*

TABLE I. Experimental implementations of quantum sensors.

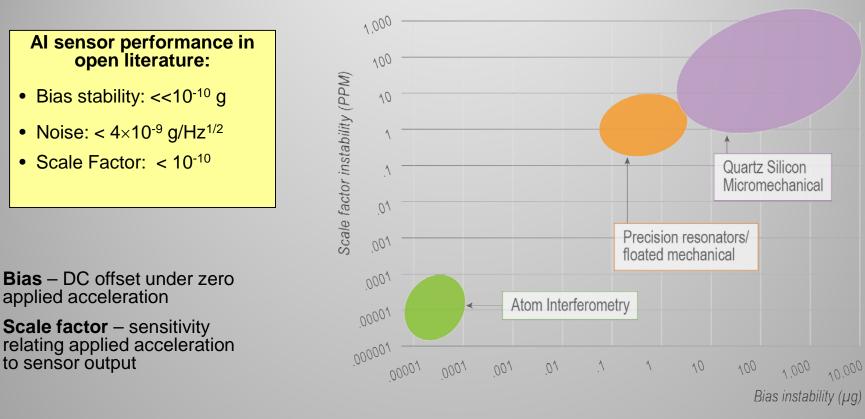
Implementation	Qubit(s)	Measured quantity(ies)	Typical frequency	Initalization	Readout	Туре
Neutral atoms						
Atomic vapor Atomic spin		Magnetic field, rotation, time/frequency	dc-GHz	Optical	Optical	П, П
Cold clouds Atomic spin		Magnetic field, acceleration, time/frequency	dc-GHz	Optical	Optical	П, П
Frapped ion(s)						
	Long-lived electronic state	Time/frequency Rotation	THz	Optical Optical	Optical Optical	П, П П
	Vibrational mode	Electric field, force	MHz	Optical	Optical	п
Rydberg atoms						
	Rydberg states	Electric field	dc, GHz	Optical	Optical	П, П
Solid-state spins (ensem	bles)					
NMR sensors	Nuclear spins	Magnetic field	dc	Thermal	Pick-up coil	Π
NV ^b center ensembles	Electron spins	Magnetic field, electric field, temperature, pressure, rotation	dc-GHz	Optical	Optical	п
Solid-state spins (single	enine)	pressure, roution				
P donor in Si	Electron spin	Magnetic field	dc-GHz	Thermal	Electrical	п
Semiconductor quantum dots	Electron spin	Magnetic field, electric field	dc-GHz	Electrical, optical	Electrical, optical	I, I
Single NV ^b center	Electron spin	Magnetic field, electric field, temperature, pressure, rotation	dc-GHz	Optical	Optical	П
Superconducting circuits						
SQUID	Supercurrent	Magnetic field	dc-GHz	Thermal	Electrical	I, I
Flux qubit	Circulating currents	Magnetic field	dc-GHz	Thermal	Electrical	Π
Charge qubit	Charge eigenstates	Electric field	dc-GHz	Thermal	Electrical	п
Elementary particles						
Muon	Muonic spin	Magnetic field	dc	Radioactive decay	Radioactive decay	П
Neutron	Nuclear spin	Magnetic field, phonon density, gravity	dc	Bragg scattering	Bragg scattering	п
Other sensors						
SET ^d	Charge eigenstates	Electric field	dc-MHz	Thermal	Electrical	I
Optomechanics	Phonons	Force, acceleration, mass, magnetic field, voltage	kHz-GHz	Thermal	Optical	I
Interferometer	Photons, (atoms, molecules)	Displacement, refractive index				П, І


- ^cSQUID: superconducting quantum interference device.
- ^dSET: single electron transistor.

- Type I exploits quantum object (e.g. few state system with gaps).
- Type II exploits quantum phase coherence.
- Type III exploits 'true' quantum characteristics – entanglement/squeezing (non-classical correlations)

 $\psi = [2\cosh(2\theta)]^{-1/2} \\ \times (e^{-\theta}|2\rangle_a |2\rangle_b + e^{i\phi} e^{\theta}|1\rangle_a |1\rangle_b)$

- Atomic Clock environment insensitive transition lock local oscillator. (e.g. hyperfine F = 4, m = 0) to F = 3, m = 0)
- Field and force sensors 'clock' operated on a sensitive transition.
 - * Quantum sensing, C. L. Degen, F. Reinhard, P. Cappellaro, RMP, 89, (2017), 035002.


How does 'Quantum Optic' Atom Interferometery Work - II?

Atomic deflection due to 25 kg mass at a distance of 1 meter over Δt ~ .25 sec is ~.5 Å.

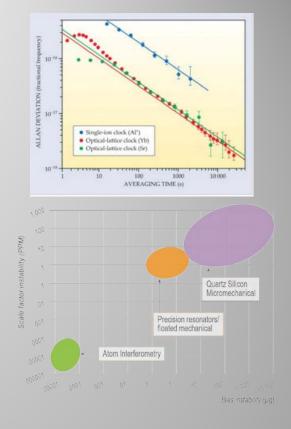
Cold-Atom interferometry gravity sensors demonstrate offthe-chart performance

Quantum projection noise limited performance (present) depends on *D*, *T*, number of atoms *N*, photon recoil k_{eff} , interference fringe contrast η :

$$\Delta T_{ZZ} \approx \frac{1}{\eta \sqrt{N} \, D \, k_{eff} T^2}$$

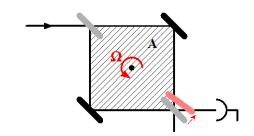
Squeezed state detection ~ $1/N^q$ (.5 < q < 1). Uncertainty limit ~ 1/N

Quantum Sensors Applications


- Atomic Clocks
 - Al⁺, Yb, Sr, clock comparisons
- Atomic fountain gravity gradiometry (mass 'tomography') Hidden mass detection at close range (portal scan & emergency response) – (current LLNL/AOSense)
 Potential further applications: tuppel/underground

Potential further applications: tunnel/underground structure detection, city building scan, treaty verification, ...

Closely connected to fundamental physics experiments:


- Measure "G" to 1/10⁶
- Space based sensors with ~ 10⁻⁵ E sensitivity GRACE mission follow-on.
- Gravitational wave detection in the .1 10 Hz regime
- 'high momentum transfer'

 Inertial motion sensors – beyond GPS – dead reckoning navigation (current AOSense/LLNL) Navy and Air Force navigation High precision navigation solution – Machine learning improved Kalman filter.

Rotations

Sagnac effect for de Broglie waves

