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Photon limitations in night vision1

1
BMW, 2005
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Photon limitations in night vision

What is the distribution of light in this scene?
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Photon limitations in fluorescence microscopy2

0.1s 10s 120s

I Want to limit data collection time
I Higher throughput experiments
I Higher temporal resolution for living cells

I Want to limit amount of dye used
I Avoid photobleaching
I Avoid toxic effects on living cells

2
University of Wisconsin Laboratory for Optical and Computational Instrumentation
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Photon limitations in spectral imaging3

More
spectral

resolution =
fewer

photons per
spectral

band

3
Molero, Garzon, Garcia, Plaza, 2012
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Photon limitations in astronomy

Spectral image of Kepler supernova
K. Borkowski, S. Reynolds, D. Green, U. Hwang, R. Petre, K. Krishnamurthy, & R. Willett, 2010
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Low dose computed tomography
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Off-the-shelf methods fail on photon-limited data

Noisy data BM3D estimate
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Problem formulation
We observe

y ∼Poisson(TAf∗)

yi ∼Poisson

T∑
j

Ai,jf
∗
j


where

I f∗ is the true image of interest,
I T > 0 corresponds to the sensing time or overall intensity
I A is an operator corresponding to blur, tomographic

projections, compressed sensing measurements, or any other
linear distortion of the image.

I Non-negativity: fj , yi, Ai,j ≥ 0
I Signal-dependent noise: E[yi] = Var[yi] = (Af∗)i

Our goal is to estimate f∗ from y.
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Scarcity of photons counteracted by exploiting
sparsity or low-dimensional structure

Finding and exploiting low-dimensional structure
in photon-limited settings presents unique

challenges
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Variance Stabilizing Transforms

One challenge associated with Poisson noise is that the variance is
signal-dependent. We can mitigate this via variance stabilizing
transforms.

1. Assume y ∼ Poisson(f∗)

2. Compute z = Anscombe(y) =⇒ zi = 2
√
yi + 3

8

3. Note zi ≈ N (2
√
f∗i + 3

8 , 1)

4. Denoise z using BM3D or other off-the-shelf image processing
method optimized for Gaussian noise to get ẑ

5. Compute f̂ = Anscombe−1(ẑ)

Extensions to inverse problems are quite challenging.
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Anscombe transform in action4

Noisy data BM3D

Anscombe + BM3D

Improved Ansc. +
BM3D

New methods for
computing

Anscombe−1(·)
make this approach
more effective than

ever.

Can we do
better?

4
Mäkitalo & Foi (2011)
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New sparsity models based on image patches

This insight
underlies
nonlocal
means,

BM3D, and
dictionary
learning
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Case study: EDS imaging
Calcium-doped neodinium titanate5

O Kα Ca Kα Ti Kα Ti Kβ

Nd Lα Nd Lβ Nd Lβ4

5
Raw data courtesy of Thomas Slater and Sarah Haigh at University of Manchester. Non-rigid alignment and

averaging by Yankovich, Berkels, Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska & Voyles (2014)
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(Spectral) image model

Consider this phantom image:

We want to exploit the redundancy in the image.

Key model idea: the (spectral) image patches lie in a union of
subspaces
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(Spectral) image model

Image
Patch

Vectorized Patch

Collection of patches

These ideas extend naturally to spectral images
(need to use 3-D patches)
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(Spectral) image model

Collection of patches

Union of subspaces

Cluster 1

Cluster 2 Cluster 3
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Why a union of subspaces?

The union of subspaces model

I is a good fit to experimental data

I has limited degrees of freedom

Consider an image (spectral image) with n pixels (voxels) and
patches of size p; usually n� pK:

PCA

I Estimates a single subspace
of rank rK in p dimensions

I Need to estimate p×Kr
principal components and
Kr × n coefficients

I Total degrees of freedom is
O(rnK)

Union of subspaces

I Estimates K subspaces of
rank r in p dimensions

I Need to estimate p×Kr
principal components and
r × n coefficients

I Total degrees of freedom is
O(rn)
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Nonlocal PCA for photon-limited imaging6

I Divide image into patches

I Cluster patches
(using Poisson Bregman divergence to measure similarity of
patches)

I Perform Poisson PCA on each cluster of patches to find
low-dimensional patch subspace
(by minimizing the negative Poisson log-likelihood with rank
constraint)

I For each patch, estimate sparse PCA coefficients
(by minimizing the negative Poisson log-likelihood + sparsity
regularizer)

6
Salmon, Deledalle, Harmany & Willett (2012)
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Do not underestimate the power of the dark side

Original scene Anscombe + BM3D;
PSNR = 13.91.

Mäkitalo & Foi (2011)

Poisson non-local
PCA; PSNR = 15.99.
Salmon, Deledalle,
Harmany & Willett

(2012)
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EDS Spectral Imaging Experimental Results7

7
Oh, Zhang, Yankovich, Willett, Voyles (2015)
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EDS Spectral Imaging Experimental Results8

8
Oh, Zhang, Yankovich, Willett, Voyles (2015)
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EDS Spectral Imaging Simulation Results9

9
Oh, Zhang, Yankovich, Willett, Voyles (2015)
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Sparsity and low-dimensional structure allow us to
perform accurate inference from small numbers of

detected photons

How can we use this insight to solve
inverse problems?
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Compressive optical systems10

A/D

Digital Micromirror
Device (DMD) Array

Random Number
Generators (RNG)

Image encoded by DMD
and random basis

Scene

Low-cost, fast, sensitive
optical detection with 

single photodiode

Reconstruction

Compressed, encoded
image data

Image

RNG

If we fix our total data acquisition time to T , then we have an
explicit tradeoff between the number of projections, n, and the

number of photons collected per projection, O(T/n). As n
increases, photon-limitations dominate errors.

10
Duarte, Davenport, Laska, Sun, Takhar, Sarvotham, Baron, Wakin & Kelly, Baraniuk (2006)
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Tomography – how should we measure?

Tomographic projection Full-angle

Sparse-angle Limited-angle Random-angle
27 / 51



Sensing model
We observe

y ∼ Poisson(TAf∗)

yi ∼ Poisson

T p∑
j=1

Ai,jf
∗
j

 , i ∈ {1, . . . , n},

where

I y ∈ Zn
+

I T ∈ R+ is the total data acquisition time

I A ∈ [0, 1]n×p is a known sensing matrix

I f∗ ∈ F , where

F =
{
f ∈ Rp

+ : ‖f‖1 = 1, ‖D>f‖0 ≤ s+ 1
}

for an orthonormal basis D
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Our goal is to reconstruct f ∗ from y. How does
performance depend on n, p, T , D, and A?

What fundamentally limits our sensing
capabilities?

1. Previous work established upper bounds; were these bounds
tight?

2. Is it better to have a lot of high-noise measurements (big n),
or a few low-noise measurements?

3. What is the impact of Poisson noise on inverse problems?

4. How should we compute estimates?
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This is not your ordinary CS problem

Sensing matrix A has several physical constraints

Think of Ai,j as likelihood of photon from location j in f∗ hitting
detector at location i:

Ai,j ∈ [0, 1]

1
>A � 1 (columns sum to at most one)

‖Af‖1 ≤ ‖f‖1 ∀f

Typical CS sensing matrices do not satisfy these constraints!
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Sensing matrix
Start with a sensing matrix Ã ∈ 1

2
√
n
{−1, 1}n×p such that the

product ÃD satisfies the RIP:

(1− δs)‖θ‖22 ≤ ‖ÃDθ‖22 ≤ (1 + δs)‖θ‖22 ∀ 2s− sparse θ

Let

A , (Ã+
3√
n
1n×p)/4

√
n.

We observe

y ∼ Poisson(TAf∗)

∼ Poisson
(TÃf∗

4
√
n

+
3T

4n
1n×1︸ ︷︷ ︸

determines
variance

)
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“Ideal” zero-mean CS signal
Renormalized zero-mean CS signal
Constant offset 
Observed intensity
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Rates for high-intensity settings (large T ) 11

Theorem:

inf
f̂

sup
f∗∈F

E[‖f̂ − f∗‖22] �
s log p

T

where

F =
{
f ∈ Rp

+ : ‖f‖1 = 1, ‖DT f‖0 ≤ s+ 1
}

I The data acquisition time T , which reflects the signal-to-noise
ratio, controls the error decay

I Once the number of measurements, n, is sufficiently large to
ensure a RIP-like sensing matrix, it does not impact errors

11
Jiang, Raskutti & Willett (2014)
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MSE vs. measurements
If we fix our total data acquisition time to T , then we have an
explicit tradeoff between the number of projections, n, and the
number of photons collected per projection, O(T/n). As n
increases, photon-limitations dominate errors.

Is it better to have a lot of high-noise measurements (big n),
or a few low-noise measurements?
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MSE vs. T : An elbow in the rates

105 1010

10-7

10-6

10-5

T

M
S

E

MSE - DCT sparsity

MSE - DWT sparsity

So far we have only considered high-intensity (large T )
settings. What happens in low intensities?
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Low-intensity settings (small T ) 12

Let f∗ ≡ 1p×1/
√
p be the average of f∗. Then

E[‖f̂ − f∗‖22] � ‖f∗ − f∗‖22

Rates depend on how much f∗ deviates from its mean (“residual
energy”), subject to the constraint that ‖f∗‖1 = 1 for f∗ ∈ F .

For different sparsifying bases D, this residual energy falls in
different ranges, giving different rates.

12
Jiang, Raskutti & Willett (2014)
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MSE vs. T : An elbow in the rates
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Low-intensity rates in two common bases13

Lower bound Upper bound

DCT 1
p

s
p

DWT s
p2 1

Dominated by
flattest s-sparse

signals in F

Dominated by
peakiest s-sparse

signals in F

13
Jiang, Raskutti & Willett (2014)
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Fourier sparsity
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...and their rates

Red signal (residual energy 0.0191) controls lower bounds,
blue signal controls upper bounds (residual energy 0.1151)

As predicted by theory, both signals have same scaling with p
but different scaling with s
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Wavelet sparsity
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...and their rates

Red signal (residual energy 0.0188) controls lower bounds,
blue signal controls upper bounds (residual energy 1.0000)

As predicted by theory, signal with high amplitude yields much
slower rates than more diffuse signal
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CS can be suboptimal at low intensities

Consider the special case where our signal is sparse in a DWT
basis, and s′ of the s nonzero coefficients are at coarse scales.

We will compare the CS paradigm from earlier with a simple
downsampling system ADS:

Measuring ADSf∗ is equivalent to measuring coarse-scale Haar
wavelet coefficients of f∗.
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CS can be suboptimal at low intensities

Consider the special case where our signal is sparse in a Haar
basis, and s′ of the s nonzero coefficients are at coarse scales.

Compressive sampling
Direct measurement of

coarse-scale info

min
(
s log p
T , sp2

)
, s′n

Tp2 +
s−s′
p2

independent of s′ dependent on s′

These curves cross; for small T and moderate s′, downsampling
can perform significantly better than compressive sampling.
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Compressive vs. direct measurements
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Ramifications

CS conventional wisdom (for Gaussian noise settings) tells us rates
are

I Independent of sparsifying basis

I Not much worse than if we collected non-compressive
measurements

In Poisson noise settings, because of the interaction between
physical constraints and sparsity assumptions

I Rates are highly dependent on sparsifying basis

I Depending on the sparsity assumptions, we can do far better
using non-compressive measurements
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Computational methods for Poisson inverse
problems
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Option 0: LASSO

Recall y ∼ Poisson(TAf∗).

f̂L = arg min
f

1

2
‖y − TAf‖22 + γ‖D>f‖1.

This approach ignores the effects of Poisson noise.
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Option 1: penalized weighted least squares14

Recall y ∼ Poisson(TAf∗).

f̂WLS = arg min
f

1

2
‖Σ−1(y − TAf)‖22 + γ‖D>f‖1,

where Σ−1 is a diagonal matrix with Σii ≈ std(yi).

Challenge is choosing Σ without knowing f∗.

I In tomography Σ is estimated by smoothing the noisy
sinogram

I Does not generalize well

I No known statistical error bounds

14
Fessler, 1994
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Option 2: regularized maximum likelihood15

Recall y ∼ Poisson(TAf∗).

f̂ML = arg min
f

− log p(y|TAf) + γ‖D>f‖1.

Unfortunately, this approach yields technical challenges:

I difficult to analyze
I most analysis based on `0 regularizer
I critical to ensure Af bounded away from zero

I slower to compute
I gradient is not Lipschitz
I off-the-shelf methods slow to converge
I need specialized tools

15
Raginsky, Willett, Harmany, & Marcia (2010);
Raginsky, Jafarpour, Harmany, Marcia, Willett, & Calderbank (2011)
Jiang, Raskutti, & Willett (2015)
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Proposition: Weighted LASSO16

Recall y ∼ Poisson(TAf∗) = Poisson(TADx∗) where f∗ ≡ Dx∗.

The weighted LASSO estimator has the form

x̂WL = arg min
x

1

2
‖y − TADx‖2 + γ

p∑
k=1

wk|xk|

f̂WL =Dx̂WL

I Easy to compute with off-the-shelf LASSO software

I Data-dependent weights handle Poisson noise
I New statistical error bounds

I Consistent with previous estimator performance bounds
I Much easier to generalize

16
van de Geer, Bühlmann, & Zhou, 2011; Bickel, Ritov, & Tsybakov, 2009
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Simulation results

p
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Photon-limited imaging

I Poisson noise important because fewer
photons = less data collection time, more
temporal resolution

I Generalized sparsity models allow accurate
inference from limited photon count data

I Both theory and methods face myriad of
tradeoffs related to

I SNR
I Sparsity
I Efficiency of computation
I Measurements system design
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Exciting mathematical challenges at the forefront of
sensor technology

http://willett.ece.wisc.edu/
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