Atom Interferometry for Mass Detection

M. Y. Shverdin, A. Zorn, B. Dubetsky, M. A. Kasevich, B. C. Young AOSense, Inc.

> D. H. Chambers, V. Sonnad, S. B. Libby Lawrence Livermore National Laboratory

> CASIS Workshop, May 23, 2012 Lawrence Livermore National Laboratory

Sensor based on Atom Interferometry (AI) can measure acceleration, rotation, gravity, and gravity gradients

- What is an atom interferometric (AI) sensor?
- HOW does an AI sensor work?
- Why use an AI sensor?

Young's double slit interferometer with He atoms

• *Atom optics analog to light interference.*

• *One of the first experiments to demonstrate de Broglie wave interference with atoms.*

1991 Light-Pulse Atom Interferometer

Courtesy of M. Kasevich, Stanford

Light-pulse atom interferometer basics

- 1. Laser cool atoms
	- Microkelvin temperatures are routinely achieved with polarization gradient cooling
- 2. Launch atoms
	- Ramping laser frequencies launches cold atoms at velocity \sim m/s
- 3. Prepare internal atomic states
	- All atoms are put into the same initial quantum state
- 4. Interferometer pulse sequence
	- Laser pulses interact with atoms to produce atom interference
- 5. Determine inertially sensitive interferometer phase
	- Measure atomic level population

Applying a properly tuned laser pulse transfers atomic population between two levels

Level scheme

Atom optic mirrors are realized with laser pulses

Atom optic beam splitters realized with laser pulses

Optical Mach-Zehnder interferometer

Atom Mach-Zehnder interferometer

Mach-Zehnder interferometer

Atom interference after the interferometer sequence can be measured

Chiow, PRL, 2011 Courtesy of M. Kasevich, Stanford

Classical picture of Light-pulse atom sensor

- Three distance measurements $\ell(t_1)$, $\ell(t_2)$ and $\ell(t_3)$ determine rock trajectory curvature.
- Acceleration **a** produces trajectory curvature.

$$
\mathbf{a} \sim [\ell(t_1) - 2\ell(t_2) + \ell(t_3)]
$$

• Distances are precisely measured by laser phases $\phi(t_1)$, $\phi(t_2)$ and $\phi(t_3)$

$$
\mathbf{a} \sim [\phi(t_1) - 2\phi(t_2) + \phi(t_3)]
$$

Ref: Kasevich and Chu, *Appl Phys B* **54** (1992).

Off-the-chart performance

Yale gravity gradiometer (2001)

A O S e n s e 14 *Courtesy Mark Kasevich, Stanford*

Airborne gravity gradient surveys with conventional gradiometer

AI sensors potentially offer 10 x – 100 x improvement in detection sensitivity at reduced instrument costs.

Stanford laboratory gravimeter

Courtesy of S. Chu, Stanford

Monitoring of local gravity using $T = 400$ ms fringes

Raman sideband cooling used to achieve very long interrogation times (200 nK launch temperature!)

Ref: Peters *et al.*, *Metrologia* **38** (2001).

Laboratory gyroscope

AI gyroscope

Courtesy Mark Kasevich, Stanford

ARW 3 µ**deg/h1/2**

Bias stability: < 60 µ**deg/h**

Scale factor: < 5 ppm

Ref: Gustavson *et al.*, PRL **78** (1997); Durfee *et al.*, PRL **97** (2006)

AOSense Commercial Compact Gravimeter

Commercial Cold Atom Gravimeter

- Noise $<$ 1 μ g/Hz^{1/2}
- Shipped 11/22/10
- First commercial atom optics sensor

- Founded in 2004 to develop cold-atom technology (Brent Young CEO).
- Core capability is design, fabrication and testing of sensors based on cold-atom technologies.
- Staff of 33

Sunnyvale, CA **AOSense.com**