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Sensor based on Atom Interferometry (AI) can 
measure acceleration, rotation, gravity, and gravity 
gradients 

• What is an atom interferometric (AI) sensor? 
 

• How does an AI sensor work? 
 

• Why use an AI sensor? 
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Young’s double slit interferometer with He atoms 

• Atom optics analog to light interference. 

• One of the first experiments to demonstrate de Broglie wave 
interference with atoms. 

Ref: Mlynek, PRL (1991) 

Measured Signal 
Experimental Set-up 
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1991 Light-Pulse Atom Interferometer 

Courtesy of M. Kasevich, Stanford 
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Light-pulse atom interferometer basics 

Magnetic shield 

Cs oven 

Wave-packet 
manipulation 

Atomic beams   

St ate 
preparation 

Laser 
cooling 

Detection 

1.  Laser cool atoms 
•  Microkelvin temperatures are routinely achieved with polarization gradient cooling  

2.  Launch atoms 
• Ramping laser frequencies launches cold atoms at velocity ~ m/s 

3.  Prepare internal atomic states 
• All atoms are put into the same initial quantum state 

4. Interferometer pulse sequence 
• Laser pulses interact with atoms to produce atom interference 

5. Determine inertially sensitive interferometer phase 
• Measure atomic level population  
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Applying a properly tuned laser pulse transfers 
atomic population between two levels 

Level scheme 
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Excitation Geometry 
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Atom optic mirrors are realized with laser pulses 
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Atom optic beam splitters realized with laser pulses 
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Optical Mach-Zehnder interferometer 

laser 

beam 
splitters mirrors 

detector 

measures the phase 
difference between 
the interfering waves 
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Atom Mach-Zehnder interferometer 
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Excitation Geometry 
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Atom interference after the interferometer 
sequence can be measured 

Chiow, PRL, 2011 
Courtesy of M. Kasevich, Stanford 
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Classical picture of Light-pulse atom sensor 

• Distances are precisely 
measured by laser phases 
φ(t1), φ(t2) and φ(t3) 

 

a ~ [φ(t1)-2φ(t2)+φ(t3)] 

• Three distance measurements 
(t1), (t2) and (t3) determine 
rock trajectory curvature.                                                                               

• Acceleration a produces 
trajectory curvature. 

  a ~ [(t1) - 2(t2) + (t3)] 

Ref: Kasevich and Chu, Appl Phys B 54 (1992). 

Falling rock Falling atom 
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Off-the-chart performance 

AI sensor performance 
in open literature: 

 
•  Bias stability: <10-10 g 

 
•  Noise: 4×10-9 g/Hz1/2 
 

•  Scale Factor:  10-10 
 

AI 

Bias – DC offset under 
zero applied acceleration  

Scale factor – sensitivity 
relating applied 
acceleration to sensor 
output  
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Yale gravity gradiometer (2001) 

1.4 m 

Atoms 

Atoms 

Demonstrated 
differential 
acceleration 
sensitivity: 

4x10-9 g/Hz1/2  

Courtesy Mark Kasevich, Stanford 
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Airborne gravity gradient surveys with 
conventional gradiometer 

Land: 3 wks. Air: 3 min. 

Diamonds 
are here 
(maybe)  

AI sensors potentially offer 10 x – 100 x improvement in 
detection sensitivity at reduced instrument costs. 
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Courtesy of S. Chu, Stanford 
Raman sideband cooling used to achieve 
very long interrogation times (200 nK 
launch temperature!) 

10-8 g 

Ref: Peters et al., Metrologia 38 (2001). 

Stanford laboratory gravimeter 
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AI gyroscope 

ARW  3 µdeg/h1/2 

Bias stability:  < 60 µdeg/h 

Scale factor:  < 5 ppm 

Gyroscope interference fringes 

Sensor noise 

Atom shot noise 

Laboratory gyroscope 

Lab technical 
noise 

Ref: Gustavson et al., PRL 78 (1997); 
Durfee et al., PRL 97 (2006) 

Courtesy Mark Kasevich, Stanford 
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AOSense Commercial Compact Gravimeter  

 

Commercial Cold 
Atom Gravimeter 
• Noise < 1 µg/Hz1/2 

• Shipped 11/22/10 
• First commercial 

atom optics sensor 



19 

• Founded in 2004 to develop     
cold-atom technology  (Brent 
Young CEO). 

• Core capability is design, 
fabrication and testing of 
sensors based on cold-atom 
technologies. 

• Staff of 33 

AOSense, Inc. 

AOSense 
408-735-9500 
AOSense.com 
Sunnyvale, CA 
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