Evaluation of Volumetric Segmentation for Aviation Security

Karina Bond, Jeff Kallman, Steve Azevedo, Harry E. Martz, Jr.
Lawrence Livermore National Laboratory

LLNL-PRES-557759
(IM#618755)

April 22, 2012
Version 4
• Segmentation of the reconstructed CT images is a key in explosive detection for airport security.

• We have been studying how to measure segmentation performance. It turns out this is not a trivial task.

• We surveyed the published literature on segmentation evaluation metrics and have developed a few ideas of our own.

• We describe one of the segmentation evaluation metrics we developed.

• We present the results of applying this metric to the Segmentation Initiative, organized by Awareness & Location of Explosives-Related Threats(ALERT) .
“ALERT, with contract funding from DHS, started a segmentation initiative in which five research groups were asked to adapt or develop algorithms to segment objects contained in scans of luggage on a medical CT scanner.”

- Segmentation of Object from Volumetric CT data Final Report, ALERT

Five research groups were selected and subsequently funded by ALERT to develop or refine existing advanced segmentation algorithms using datasets supplied to them by ALERT. The datasets consisted of scans on a medical CT scanner of luggage, in addition to ground truth for the training and evaluations portions of the dataset.
Evaluation of Segmentation Algorithms

Segmentation Evaluation Methods

Subjective Methods
Qualitative evaluation of segmentation results by a human evaluator.

Objective Methods
Quantitative evaluation of segmentation algorithms.

System-Level Methods
Methods that evaluate segmentation on the basis of the larger system's parameters. In the case of CT based images these parameters might be the following:
- $\mu(i)$, Linear Attenuation Coefficient of i-th object.
- $V(i)$, volume of i-th object.

Direct Methods
Methods that evaluate segmentation independent of the larger system they are used in.

Analytical Methods
Theoretical evaluation methods that can be calculated without any results solely based on algorithm details.

Empirical Methods
Evaluation Methods that are calculated on the basis of the results of the segmentation algorithm.

Unsupervised Methods
Evaluation methods that are based only on a set of segmentation results (no ground truth).

Supervised Methods
Evaluation methods that are based on the result of the segmentation algorithm and a ground truth image.
- P1\P2 Metric
- Martin Error (GCE\LCE)
- Object Consistency Error (OCE)
- F-Measure
Assume \(I_g = \{T_1, T_2, \ldots, T_M\} \) is the ground truth image, where \(T_i \) is the \(i \)-th object in \(I_g \).

Assume \(I_s = \{S_1, S_2, \ldots, S_N\} \) is the segmented image, where \(S_j \) is the \(j \)-th segment in \(I_s \).

Precision, \(P_{ij} \) and Recall, \(R_{ij} \) for the \(ij \)-th fragment, \(G_{ij} \) can be calculated as follows.

For \(1 \leq i \leq M \) and \(1 \leq j \leq N \)

\[
G_{ij} = T_i \cap S_j
\]

\[
R_{ij} = \frac{|G_{ij}|}{|T_i|} = \frac{|T_i \cap S_j|}{|T_i|}
\]

\[
P_{ij} = \frac{|G_{ij}|}{|S_j|} = \frac{|T_i \cap S_j|}{|S_j|}
\]
Assume $I_g = \{T_1, T_2, \ldots, T_M\}$ is the ground truth image, where T_i is the i-th object in I_g.

Assume $I_s = \{S_1, S_2, \ldots, S_N\}$ is the segmented image, where S_j is the j-th segment in I_s.

Precision, P_{ij} and Recall, R_{ij} for the ij-th fragment, G_{ij} can be calculated as follows.

For $1 \leq i \leq M$ and $1 \leq j \leq N$

$$G_{ij} = T_i \cap S_j$$

$$R_{ij} = \frac{|G_{ij}|}{|T_i|} = \frac{|T_i \cap S_j|}{|T_i|}$$

$$P_{ij} = \frac{|G_{ij}|}{|S_j|} = \frac{|T_i \cap S_j|}{|S_j|}$$
Assume $I_g = \{T_1, T_2, ... T_M\}$ is the ground truth image, where T_i is the i-th object in I_g. Assume $I_s = \{S_1, S_2, ... S_N\}$ is the segmented image, where S_j is the j-th segment in I_s.

Precision, P_{ij} and Recall, R_{ij} for the ij-th fragment, G_{ij} can be calculated as follows.

For $1 \leq i \leq M$ and $1 \leq j \leq N$

$$G_{ij} = T_i \cap S_j$$

$$R_{ij} = \frac{|G_{ij}|}{|T_i|} = \frac{|T_i \cap S_j|}{|T_i|}$$

$$P_{ij} = \frac{|G_{ij}|}{|S_j|} = \frac{|T_i \cap S_j|}{|S_j|}$$

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.75</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
The F-Measure [1] is calculated for each fragment from their precision and recall as follows,

\[
F_{ij} = \frac{2P_{ij}R_{ij}}{(P_{ij} + R_{ij})} \quad \text{when } P_{ij} \neq 0, R_{ij} \neq 0
\]

\[
F_{ij} = 0 \quad \text{Otherwise.}
\]

In order to get one quantitative metric per dataset, we calculate a combined F-Measure as,

\[
F_g = \frac{1}{M} \sum_{i=1}^{M} \max_j \left(F_{ij} \right) |T_i|
\]

\[
F_g = \frac{1}{M} \sum_{i=1}^{M} \max_j \left(\frac{2P_{ij}R_{ij}}{(P_{ij} + R_{ij})} \right) |T_i|
\]

Training Bag 3
Precision vs. Recall

- Researcher 1
 - Precision vs. Recall

- Researcher 2
 - Precision vs. Recall

- Researcher 3
 - Precision vs. Recall

- Researcher 4
 - Precision vs. Recall

- Researcher 5
 - Precision vs. Recall
Researchers’ Scores for Training Bag 3

Fg for Training Bag 3

- **Researcher 1**
- **Researcher 2**
- **Researcher 3**
- **Researcher 4**
- **Researcher 5**
• Based on the Fg metric, all researcher scores are in the same ball park. There is no one researcher that outshines the others in performance.

• Since we have not been able to tie these scores back to system – level performance, we cannot say that small differences in Fg scores make an insignificant difference to overall system performance.

• Researchers 1, 2 & 3 have a similar trend across all the bags. Researchers 4 & 5 have much more variation in their scores across all the bags. This means that the performance of Researcher’s 3 & 4 algorithms is not as consistent for varying data as Researcher’s 1, 2 & 3.
Applicability to System-level Performance

It is important that supervised metrics correlate well with system performance.

System-Level Methods
Methods that evaluate segmentation on the basis of the larger system’s parameters. In the case of CT based images these parameters might be the following.

- $\mu(i)$, Linear Attenuation Coefficient of i-th object.
- $V(i)$, volume of i-th object.

Segmentation Evaluation Methods

Subjective Methods
Qualitative evaluation of segmentation results by a human evaluator.

Objective Methods
Quantitative evaluation of segmentation algorithms.

Direct Methods
Methods that evaluate segmentation independent of the larger system they are used in.

Analytical Methods
Theoretical evaluation methods that can be calculated without any results solely based on algorithm details.

Empirical Methods
Evaluation Methods that are calculated on the basis of the results of the segmentation algorithm.

Unsupervised Methods
Evaluation methods that are based only on a set of segmentation results (no ground truth).

Supervised Methods
Evaluation methods that are based on the result of the segmentation algorithm and a ground truth image.

- $P1\|P2$ Metric
- Martin Error (GCE\LCE)
- Object Consistency Error (OCE)
- F-Measure
Applicability to System-level Performance

- For CT and ATD, we really need to identify threats based on system-level values per segment
 - linear attenuation coefficient (μ) and
 - volume (V) of the segment

- As segmentation gets worse a good metric should also get worse.
 - Over-segmenting (splitting) can lead to correct μ and wrong V, while
 - Under-segmenting (merging) can lead to wrong μ and wrong V

- Current metric definitions allow a segment to match with more than one ground-truth object
 - Errors are calculated per ground-truth object (not per segment)
 - As the red segment merges more into Ground Truth Object 1, segmentation get worse but the current metrics get better after initially getting worse.

We will need to modify these supervised metrics to make them more appropriate for system-level and ATD performance.
Summary

• Summary
 • Segmentation of the reconstructed CT images is a key in explosive detection for airport security.

 • Studied how to measure segmentation performance and it turns out this is not a trivial task.

 • Surveyed the published literature on segmentation evaluation metrics and have developed a few ideas of our own.

 • Described one of the segmentation evaluation metrics we developed.

 • Present the results of applying this metric to the Segmentation Initiative researchers results

• Future work
 • Develop a segmentation metric that can be related back to system-level parameters.
Backup Slides
Precision\Recall Definitions
(Example of Perfect Segmentation)

Assume $I_g = \{T_1, T_2, ... T_M\}$ is the ground truth image, where T_i is the i-th object in I_g.

Assume $I_s = \{S_1, S_2, ... S_N\}$ is the segmented image, where S_j is the j-th segment in I_s.

Precision, P_{ij} and Recall, R_{ij} for the ij-th fragment, G_{ij} can be calculated as follows.

For $1 \leq i \leq M$ and $1 \leq j \leq N$

$$G_{ij} = T_i \cap S_j$$

$$R_{ij} = \frac{|G_{ij}|}{|T_i|} = \frac{|T_i \cap S_j|}{|T_i|}$$

$$P_{ij} = \frac{|G_{ij}|}{|S_j|} = \frac{|T_i \cap S_j|}{|S_j|}$$

<table>
<thead>
<tr>
<th>R</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Assume \(I_g = \{T_1, T_2, \ldots, T_M\} \) is the ground truth image, where \(T_i \) is the i-th object in \(I_g \).

Assume \(I_s = \{S_1, S_2, \ldots, S_N\} \) is the segmented image, where \(S_j \) is the j-th segment in \(I_s \).

Precision, \(P_{ij} \) and Recall, \(R_{ij} \) for the \(ij \)-th fragment, \(G_{ij} \) can be calculated as follows.

For \(1 \leq i \leq M \) and \(1 \leq j \leq N \)

\[
G_{ij} = T_i \cap S_j
\]

\[
R_{ij} = \frac{|G_{ij}|}{|T_i|} = \frac{|T_i \cap S_j|}{|T_i|}
\]

\[
P_{ij} = \frac{|G_{ij}|}{|S_j|} = \frac{|T_i \cap S_j|}{|S_j|}
\]
Assume $I_g = \{T_1, T_2, ..., T_M\}$ is the ground truth image, where T_i is the i-th object in I_g.

Assume $I_s = \{S_1, S_2, ..., S_N\}$ is the segmented image, where S_j is the j-th segment in I_s.

Precision, P_{ij} and Recall, R_{ij} for the ij-th fragment, G_{ij} can be calculated as follows.

For $1 \leq i \leq M$ and $1 \leq j \leq N$

\[G_{ij} = T_i \cap S_j \]

\[R_{ij} = \frac{|G_{ij}|}{|T_i|} = \frac{|T_i \cap S_j|}{|T_i|} \]

\[P_{ij} = \frac{|G_{ij}|}{|S_j|} = \frac{|T_i \cap S_j|}{|S_j|} \]

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>0.67</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>0.33</td>
</tr>
</tbody>
</table>

CT Data\Ground Truth
Segmented Image

Precision vs. Recall

1

-1
-2
-3
As S2 bleeds into T1, error in volume and mean attenuation for S2 increases. Therefore we should expect that the scoring metric should decrease from left to right.
Applicability to System-level Metrics

- P2 and Fg decrease as the S2 bleeds into T1, until Precision and Recall for T1 are dominated by the Precision and Recall for the T1 vs. S2 fragment. After this point, P2 and Fg starts to increase even though intuitively the score should continue to decrease (since the segmentation continues to get worse).

This occurs because we are allowing the same segment (S2) to contribute to the score of more than one ground truth object (T1 and T2).
Proposed plan for developing a system-level applicable metric

Step 1: Assign each segment to a single ground truth object.

- Hungarian algorithm to come up with the optimal assignment.
- The cost can be based on the on multiple features such as overlap, distance between centroids, principal axes, distance to mean attenuation etc.

Step 2: Calculate a single metric by combining the individual “score” for each segment (w.r.t. to it’s assigned ground truth object from Step 1).

The individual score for each segment could be

- It’s F-measure.
- Mathew’s Correlation coefficient.
- A multi-feature based error (i.e. error between the segment’s mean attenuation \(\text{volume}\) and it’s assigned ground truth object’s mean attenuation \(\text{volume}\)).