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Deterium-Tritium fusion experiments are being 
conducted at the NIF

• Purpose: further the understanding of the physics underlying the use 
of inertial confinement fusion for safe, clean energy production
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• A cylindrical Hohlraum target is located 
at the center of a 10 m diameter 
spherical target chamber 

• Target has a laser entrance hole at the 
top and bottom 

• 192 laser beams radiate and heat the 
inside walls of the target resulting in X-
rays being released

Upper lasers directed at target 
http://lasers.llnl.gov
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Deuterium-Tritium reaction produces neutrons

• X-rays heat a cryogenically-
cooled capsule (shell) inside 
the target containing Deuterium 
and Tritium
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Note:  1 MeV = 1.602e-13 Joules. Characteristic of energy changes in nuclear processes
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• Capsule compresses, implodes, and fuses

• The fusion reaction releases neutrons: 
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Neutron Time of Flight (nTOF) detector measures 
prompt 14 MeV neutrons and scattered lower energy 
neutrons

• Time-of-flight technique: The arrival time at a detector 
corresponds to the energy of the neutron along a line of sight 

— Initial 14 MeV (within red ring) neutrons escape from the reaction 
and travel to a detector without collisions in the dense fuel

— Scattered neutrons occur between green and blue rings and have   
less energy; therefore they arrive later in time
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Red Ring     13 MeV
Blue Ring    12 MeV
Purple Ring 10 MeV
Green ring    6 MeV



Recorded neutron signal includes the response of 
the hardware between detector and digitizer  

Deconvolution can be used to unfold the impulse response 
function (IRF) of the hardware components out of the recorded 
nTOF signal to approximate the signal at the detector
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Richardson-Lucy (R-L) Iterative, Time-Domain 
Deconvolution

• Forward Convolution Model:

— m: measured data
— h:  IRF
— n:  neutron time-of-flight signal
— p:  Gaussian-distributed noise

• The R-L method determines the most likely n[k] given the 
measured data m[k] and IRF h[k]

• Maximum-likelihood solution obtained and is positive for 
positive output data

— Fister, et al., “Deconvolving instrumental and intrinsic broadening in 
core-shell X-ray spectroscopies”, Phys. Rev. B, 2007  (and the many 
references therein)
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Richardson-Lucy Iterative Solution

• Deconvolved signal:  the update of n[k] at the i+1 iteration is

— The         is the convolution of the deconvolved neutron 
signal with the IRF and is an estimate to the measured data  

— The         approaches the measured data at each sample with 
increasing number of iterations         

— The ratio in braces approaches unity and n(i+1) ≈ n(i) for a 
unit integral IRF

• Exit criterion:
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Key nuclear metrics can be computed using the 
deconvolved signal
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Evaluation of deconvolution technique using noisy 
synthetic data (scenario 1)

• Known neutron spectrum
— Tion = 4 keV
— Areal density ≈ 1.0 g/cm2

— Distance = 20 m

• Test signal
— Neutron signal convolved 

with a known IRF
— Additive digitizer noise 

with peak-to-noise ratio of 
30 dB
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• Result
— Convergence in 120 iterations for 

a 0.5% diff in chi square 
— Percent difference in DSR is 0%

True Signal
R-L Estimate

Residual
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Evaluation of deconvolution technique using noisy 
synthetic data (scenario 2)
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• Result
— Convergence in 48 iterations for a 

0.5% diff in chi square 
— Percent difference in DSR is 1.2%

• Known neutron spectrum
— Tion = 4 keV
— Areal density ≈ 1.0 g/cm2

— Distance = 20 m

• Test signal
— Neutron signal convolved 

with a known IRF
— Additive digitizer noise 

with peak-to-noise ratio of 
20 dB

True Signal
R-L Estimate

Residual
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Example neutron spectra deconvolved from 
experimental data

• nTOF SPEC-A (116-316 location) deconvolved neutron 
spectra for three DT experiments with approximately the 
same ion temperature 
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Shot ID Yield
(neutrons)

DSR Tion
(keV) 

N110608 1.9e14 0.042 3.2
N111215 7.5e14 0.052 3.5
N120321 4.0e14 0.070 3.3

nTOF SPEC-A (116-316) Results

Note:
yield relative uncertainty: 0.07
DSR relative uncertainty: 0.10
Tion absolute uncertainty: 0.15 keV
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Concluding Remarks

• A method for estimating the neutron 
spectrum using Richardson-Lucy 
deconvolution has been presented

• The spectral estimate allows for key 
nuclear metrics to be readily 
computed including the neutron yield 
and downscatter ratio

• This analysis is quality-controlled 
software that is automatically
launched within minutes after an 
experiment occurs on data from 14 
nTOF detectors

— Results displayed on a NIF web 
page (see typical example on 
right)
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