

Visualization of experimental and numerical data at the Sustained Spheromak Physics Experiment

C. A. Romero-Talamás

With contribution from: E. B. Hooper, H. S. McLean, R. D. Wood, J. M. Moller

Lawrence Livermore National Laboratory Livermore, CA, 94551-9900 U. S. A.

This work was performed under the auspices of the U.S. DOE by the University of California, LLNL under contract No. 7405-Eng-4.

The authors are grateful to **Paul M. Bellan** and **Caltech** for their continued support to SSPX with the High-speed Imaging hardware, and to the **Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas (CMSO)**, and the **University of California Lawrence Livermore National Laboratory** for their financial support.

> Signal and Imaging Sciences Workshop Livermore, California November 16, 2006

1

- The Sustained Spheromak Physics Experiment
- Imaging and magnetic diagnostics.
- Numerical MHD simulations of SSPX, and spheromak formation hypotheses.
- The search for reconnection and flux ropes.

Sustained Spheromak Physics Experiment (SSPX)

- The research program has focused on two important areas:
 - Magnetic field generation by coaxial helicity injection with associated internal helicity.
 - The effect of magnetic fluctuations on energy confinement in the driven spheromak.
- Basic plasma science is an integral part of the SSPX program.
- SSPX has been operating at the • Lawrence Livermore National Laboratory since 1999.

Typical SSPX parameters	
Flux conserver size: Radius × Height (m)	0.5 ×0.5
Radius of magnetic axis	0.31 m
Minor radius	0.17 m
Peak discharge current	550 kA
Toroidal current	600 kA
Peak toroidal field	0.6 T
Edge poloidal field	0.35 T
Plasma duration	11 ms
Plasma density	$7 \times 10^{19} \text{ m}^{-3}$
Peak Te	350 eV

The SSPX facility at Livermore showing the vacuum vessel and major external diagnostics. Not shown: magnet supplies, capacitor banks, and control systems.

High-speed imaging diagnostic

4

Early Formation Sequence Seen With the Caltech High-speed Camera

Shortly after the column is formed, it kinks

Spheromak with open and closed surfaces

- Helicity injection and flux amplification processes still poorly understood.
- Reconnection is essential, but not sure when and where it happens.
- Both SSPX and NIMROD achieve closed (toroidally averaged) surfaces, but mechanisms appear to be different.

Formation Hypotheses

Magnetic Reconnection and Helicity Injection

- Flux amplification involves reconnection, but the mechanism that leads to flux amplification in SSPX is still unknown.
- Two models proposed:
 - 1. NIMROD predicts negative current sheets near the X-point of the mean-field spheromak, with chaotic behavior prior to relaxation for spheromak formation.
 - 2. The transient column bends and forms two loops that then reconnect to form linked flux.

Two-turn reconnection (in a localized region) to form linked flux

Insertable probes to study magnetic evolution

Measures (B_r , B_θ , B_z) along the entire machine radius. Array of 24 clusters every 2 cm.

Measuring B field inside plasma column

Chip inductors Number of turns: 50 Inductance: ~ 5 μH

Probe can be retracted without perturbing vacuum

Magnetic Measurements

Comparison Between NIMROD and SSPX

Numerical simulations reproduce closely the ejection of plasma out of the gun. However, NIMROD shows poloidal flux inside the bubble tenths of microseconds before what is observed in the experiment

Magnetic Reconnection is essential for formation

- Magnetic reconnection required to form closed flux surfaces.
- Challenging to find X-points and O-points in short time-scales and varying spatial scales.

Flux rope simulator

- A code was created to simulate current-carrying flux ropes with with finite diameter and arbitrary shapes.
- The simulations are used to learn how signals from ropes are like as they fly past one or multiple probe arrays

Flux ropes in SSPX

- Flux ropes are inferred for short periods of time using the insertable ٠ probe.
- However, still not enough to follow the entire kink process. ٠

would carry ~ 50 kA.

Magnetic signals for shot 15261. Vector data separated every microsecond.

699799999

ADD DODD

4999994ª

dodd da

8999 9999

2224 PPP99

RRRR RAPP

RRRA PA

RARA PAR

RRAY

\$\$\$PPPP

If a structure that passes by the probe within this interval is approx. constant, then a single probe array works as a double probe.

13

Discussion

- Number of reconnection events during formation, together with helicity accounting in the formation column, will help elucidate spheromak formation.
- Algorithms to search for reconnection (X-points) and flux ropes (O-points) are being developed.
 - Solutions are non-unique for limited number of probes.
 - Multiple ropes and highly kinked structures pose even greater challenge.

(decay stage)

Future work

- Build a double-array probe that is movable inside the volume.
 - Search for X-points and O-points with automated software (challenge: to make the search 'fast').
 - Probe will further constraint the reconstruction of kinks in the column.

