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Outline of This Presentation

• The Sustained Spheromak Physics Experiment

• Imaging and magnetic diagnostics.

• Numerical MHD simulations of SSPX, and

spheromak formation hypotheses.

• The search for reconnection and flux ropes.
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Sustained Spheromak Physics Experiment (SSPX)

• SSPX has been operating at the
Lawrence Livermore National
Laboratory since 1999.

The SSPX facility at Livermore showing the vacuum vessel and major external diagnostics.
Not shown: magnet supplies, capacitor banks, and control systems.

• The research program has focused on two important areas:

– Magnetic field generation by coaxial helicity injection with associated internal helicity.

– The effect of magnetic fluctuations on energy confinement in the driven spheromak.

• Basic plasma science is an integral part of the SSPX program.
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High-speed imaging diagnostic

Vessel

ICCD

Bellows

The SSPX chamber

has an opening in the

flux conserver and

several viewports for

instrumentation and

measurements
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Shortly after the column is formed, it kinks

Early Formation Sequence Seen With the

Caltech High-speed Camera

Early formation sequence
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Spheromak with open and closed surfaces

• Helicity injection and flux amplification processes still poorly understood.

• Reconnection is essential, but not sure when and where it happens.

• Both SSPX and NIMROD achieve closed (toroidally averaged) surfaces,

but mechanisms appear to be different.
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Formation Hypotheses

Magnetic Reconnection and Helicity Injection

• Flux amplification involves reconnection, but the mechanism that leads to flux

amplification in SSPX is still unknown.

•  Two models proposed:

1. NIMROD predicts negative current sheets near the X-point of the mean-field

spheromak, with chaotic behavior prior to relaxation for spheromak formation.

2. The transient column bends and forms two loops that then reconnect to form linked

flux.

Two-turn reconnection (in a localized region) to

form linked flux

NIMROD also shows the transient

column formation.

NIMROD:  ( oJ||/B)

reversal (in 3D)

and chaos prior to

Taylor relaxation
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Measures (Br , B  ,Bz) along the entire machine radius.

Array of 24 clusters every 2 cm.

Probe mounted on

SSPX chamber

Measuring B field

inside plasma

column

Probe can be retracted without perturbing vacuum

2 cm

72 chip inductors

arranged in 24

clusters

Insertable probes to study magnetic evolution

Chip inductors 

Number of turns: 50
Inductance: ~ 5 μH

8.3 mm
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Magnetic Measurements

toroidal

Shot 15261

Hollow current profile

55 s

60 s

poloidal

A hollow current profile is

measured before kinking
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Comparison Between NIMROD and SSPX

NIMROD Magnetic Signal
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Magnetic Reconnection is essential for formation

• Magnetic reconnection required to form closed flux surfaces.

• Challenging to find X-points and O-points in short time-scales and

varying spatial scales.
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Flux rope simulator

• A code was created to simulate current-carrying flux ropes with with finite diameter and

arbitrary shapes.

• The simulations are used to learn how signals from ropes are like as they fly past one or

multiple probe arrays

Bp x Bt Bt Bp

t1
Flux rope below probes

t2
Flux rope between probes

t3
Flux rope above probes
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Flux ropes in SSPX

Bt Bp

• Flux ropes are inferred for short periods of time using the insertable

probe.

• However, still not enough to follow the entire kink process.

Magnetic signals for shot 15261. Vector

data separated every microsecond.

Bp

Flux rope signature in

an interval of ~ 10 s

73 s

Using Ampere’s law,

a single flux rope

would carry ~ 50 kA.

If a structure that

passes by the

probe within this

interval is

approx. constant,

then a single

probe array

works as a

double probe.
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Discussion

• Number of reconnection events during formation, together with helicity
accounting in the formation column, will help elucidate spheromak
formation.

• Algorithms to search for reconnection (X-points) and flux ropes (O-
points) are being developed.

– Solutions are non-unique for limited number of probes.

– Multiple ropes and highly kinked structures pose even greater challenge.

(decay stage)
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Future work

• Build a double-array probe that is movable inside the volume.

– Search for X-points and O-points with automated software (challenge: to
make the search ‘fast’).

– Probe will further constraint the reconstruction of kinks in the column.

Double probe

inserted closed

Double probe

opened inside flux

conserverProbe mechanism must withstand

‘harsh’ plasma conditions.


