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Goals

Present the challenges in automated 
nuclide identification
Define common terms required to discuss 
identification algorithms
Demonstrate the need for Metrics and Test 
Benches



Problem Statement

What challenges we face.



What is the value of nuclide 
identification?

The goal of any protection system is to recommend a 
course of action to maximize the probability that a threat 
will be caught.

Minimize unnecessary searches of non-threatening material
Raising response appropriately on potentially threatening sources

The limiting resource is the number of secondary 
inspections
The brightest sources are either RDD potentials or medical 
sources
Nuclide Identification is simply a means to achieve our 
ends



Statistical
Definition

Errors
Background 
Distribution

Source
Distribution

False Negative
Incorrectly omitting a 
nuclide that is present
Allows a threat to pass 

False Positive
Incorrectly reporting a 
nuclide that is not present
Results in an unnecessary 
search

Errors
Result from overlap in statistical distributions 
Can be minimized but never eliminated



Statistical
Definition

Ambiguity

Nuclide A
Nuclide B

Ambiguity – an observation can be reasonably 
interpreted in more than one way.

As the source counts are reduced distributions grow wider
Nuclides become more difficult to separate 
Numbers of errors increase



Domain
Source Sample Space

Pu Threats

Radiography 
Sources & RDD

U K40
Th

Typical 
Detection 
Threshold

Insufficient cnts
For ID

Medical sources

Count 
rate

Energy



Alarms

Risk Categories 

HIGH MEDIUM LOW
Must do secondary 
inspection

May avoid secondary 
inspection

•High confidence 
threatening ID

•Highly shielded ID 
(RDD)

•High count rate, no ID

•Suspect Mixture

•Apparent Background

•High confidence non-
threatening sources

•Ambiguous ID with 
more counts than 
expected from 
background 

Improvements in spectral id => Fewer errors + Minimize ambiguous cases
=> Reduced number of unnecessary secondary inspections



Identification Components

What makes mindless automatons tick?



Anatomy of Nuclide Identifier
Template 

Library

Identification
Algorithm

Post
Process

Observation 
(Sample)

Preprocess
Feature
ExtractExpectation 

(Bkg)

Result

Gain estimation
Minimum rate 
assertion

Channel 
decimation
PCA
Peak extractor              

Classifier
Distance metric
Decision function

Estimator
Objective function
Iterative Solver

Heuristic

Significance 
thresholding
Confidence 
computation
Alarm 
Categorization 



Template Algorithm Types

CLASSIFIERS
Asks
What template best fits the 
observation?
Properties

Produces a list of templates 
ranked by fitness to the 
observation
Template library must fully 
span input domain, including 
naturally occurring mixtures

ESTIMATORS
Asks
What weighted sum of templates 
best represents the observation?
Properties

Produces a weighting vector
Mixture can span into novel and 
unanticipated situations
Best solution may not represent 
the true solution (No ranking)

CLASSIFIER
• Has Ranking
• Limited Solutions

ESTIMATOR
• Lacks Ranking
• Unlimited Solutions



Identification Methods

Feature Extractors
Channel Decimation
PCA
Peak Extractor

Feature enhancers
Deconvolution

Other
Multi-detector Spectral 
Comparison
Asymmetric Detector Nuclide 
Identification/Deconvolution

Identification Algorithms
Classifiers

Neural Networks
Bayes Classifier
Nearest Neighbor

Estimators
Multiple linear regression 
(Fittodb) 
Gauss-Newton
Expectation Maximization

Heuristics
Energy Banding
Peak identification 

Other
Shielding Estimators (MBS)



Domain of Nuclide Identifiers

Estimator

Deconvolution

Peak Identifier

Classifier

Spectral 
Comparison

As number of counts increase, un-modeled effects become visible
Ground Bounce, Scattering in Environment, Age, Trace isotopes

Template algorithms fail due to inadequate modeling

10 100 1k 10k 100k

Counts



Performance Testing

How well do automatons work under 
pressure?



Performance
Testing

Characteristics of methods
 GADRAS PCA 

Classifier 
MLG 

Type Estimator Classifier Hybrid 
Algorithm MLR PCA/MSE 

(dot prod) 
Gauss-Newton 

ML/LBF 
Metric Chi Squared Poisson 

Likelihood 
AIC 

Groups/Trials 5 528 25 
Nuclide Output Composition 1 Library 

Element 
1 Nuclide 

Group 
Reports  
“No Detection” 

Yes Yes Yes 

Reports 
“Unknown” 

No 
 

Yes Yes 

Additional 
Output 

SNM 
catagory 

Sorted Library 
List  

Fitness of each 
Isotope Group 

Run Speed 1 – 3 seconds 0.5 seconds 0.25 seconds 
 
 



Performance
Testing

Evaluation methodology

Evaluated on two sets
Verification – library elements as inputs to algorithm
Test – set of similar inputs representing real world inputs

Ran 100 trials for each using Poisson random draws
Varied the expected input signal from 50 to 1000 counts 
for test set
Background added to sample was Poisson random draw 
with expected 400 counts
Reference background was Poisson random draw with 
expected 120000 counts
Produced

Score based on exact matches or inclusion
Cross Correlation Matrix of outputs produced by sample
Threat class based assignment



Performance
Testing

Verification results
When given library elements and asked figure out 
which one, we expect nearly perfect performance.
We didn’t get it.

Algorithm False Negative False Positive 
GADRAS 29% 34% 

PCA 10% 10% 

MLG 7% 6% 

 

(at 300 cps)



Performance
Testing

Verification results
PCA and MLG both performed significantly better 
than GADRAS (1/3 total number of errors)
Some items failed to identify or were labeled as 
mixtures by all methods.

232Th 228Th
201Tl 139Ce
226Ra 252Cf

192Ir 237Np
67Ga 237Np
133Ba 131I

Implies library contains indistinguishable nuclides that cannot 
be resolved with NaI resolution.



Performance
Testing

Choice of test cases

Sources
Most commonly detected medical isotopes

99mTc
131I
201Tl
67 Ga

Common industrial and potential RDD, 137Cs
Natural nuisance sources

Bananas
Wood
Fertilizer w/ potash

Weapon surrogates with and without lead shielding
HEU
Virgin HEU
Weapons grade Pu
Reactor grade Pu



Performance
Testing

Correlation Result for Tests
Outputs are 90% identification point with noted errors.  
Best is overall performance at all count levels. 
 

Isotope GADRAS PCA MLG Best 
99mTc 100 100 100 PCA 
131I 1000 133Ba 1000 133Ba 1000 133Ba PCA 
201Tl 139Ce 300 200 MLG 
67Ga 300 237Np 32% 300 MLG 
137Cs 200 100 100 MLG 
Bananas 300 500 300 GAD 
Wood 300 500 500 GAD 
Potash 500 152Eu 70% 152Eu 30% GAD 
HEU 300 200 200 GAD 
Virgin HEU 300 200 300 GAD 
RG Pu 1000 137Cs 40K 30% 137Cs 12% MLG 
WG Pu 500 300 500 PCA 
HEU 1” Pb 232U 84% 232U 55% 232U 55% none 
Virgin HEU 1” Pb 238U 100% 238U 100% 238U 100% none 
RG Pu 1” Pb 232Th 79% 232Th 79% 252Cf 40% none 
WG Pu 1” Pb 137Cs 70% 252Cf 33% 252Cf 90% none 
 



Conclusions

The bottom line



Conclusion

What are the problems in nuclide identification
Ambiguity, Nuisance sources, Inadequate resolution

What are the problems in a Classifier and an Estimator
Classifier – Restricted to ranked list
Estimator – Restricted to one solution

How well do current technologies work
Not so swift

What is to be gained by defining a test bench
We can optimize our methods to improve their performance





Learning from our mistakes

Fool me once shame on you, 
Fool me twice shame on me.



Estimator

LLNL’s Template Based Isotopic Identifier

Produces
Optimum fit for single isotope or specified mixtures 
with arbitrary ratios
An “unknown” result in response to novel samples or 
unexpected mixtures
Multiple solutions where more than one possible
Significance and Confidence levels for each solution

Designed for low count spectra (<1000 cts)
Works with large (2x4x16) NaI detectors
Uses non-linear Gauss-Newton solver 



Verification Result

Verified by probing algorithm 100 random samples for each template.
Samples were drawn to have ~300 counts of source with 334 counts of 
background
Reference 5 minute background provided

Scored based on false positive and false negative

Require real world frequency data to compute weighted score

Un-weighted Results:

False Negative: 134/14300 trials  less than 1%.
False Positive:   4217/14300 trials  ~30%



Feature Extraction

Getting the most out of an observation



Feature
Extraction 

Channel Decimation

Method
Adds groups of neighboring channels

Properties
Maintains statistical properties 
Resulting information loss can cause ambiguity
Increases statistical significance of each channel
Must strike a balance between information loss and improved 
significance 
Radiation spectrum has natural grouping by the square root of the 
channel energy



Feature
Extraction 

Principle Component Analysis

Method
Transform input along the basis vector representing the greatest
variance (most representative)

Mathematics 

Properties
Does not preserve the statistics of the observation
Good to reduce high dimensional data sets with minimal loss
Can reduce noise if it can not be represented in the feature space
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Select K largest eigenvalues

Eigenvalue decomposition

Transform on this basis



Classifiers

What is the best match?



Algorithm
Nearest Neighbor Classifier 
Dot Product

Purpose
Compute the nearest template using L2 norm to the observation.

Mathematics

Properties
Shaped based spectral analysis frequently paired with PCA.
Computationally inexpensive for each template.
Requires many templates to fully span input domain.
Does not account for statistical nature of noise.
Does not allow for fluxations in background conditions.

2

2ikTEO −−=ε ( )
i

i

T
TEO ⋅−=ε

minimize maximize



Estimators

How much of each?



Estimator
Algorithm

Anatomy of An Estimator

Template 
Library

Iterative
Solver

Heuristic
Elements

Objective 
Function

Feature 
Vector
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Estimator
Algorithm

Maximum Likelihood of Subgroups

Estimator using Poisson Statistics and Maximum Likelihood Nonlinear 
Solver
Requires Logarithmic Barrier Function (LBF) to impose fully positive 
constraints
Computes Likelihood of best fit for Background plus each set of 
nuclides (all shieldings)

Gain
Adjust

Downsample
62 Channels

Downsample
62 channels

Background

Gauss-Newton 
Solver

ML/LBF

Nuclide
Library

24 Nuclides
Plus empty set

Sample

Fitness of each 
Nuclide Group



Estimator
Algorithm

Anatomy of fittodb (GADRAS)

Core is Heuristic guided MLR (multiple linear regression) 
Objective Function is χ2 based on 7 variance estimations
Breaks the library into 4 classes for subgroup analysis

Natural
Medical 
Industrial
SNM

Produces 
Fitness of SNM
Nuclide Identification (only reports “significant contributors”)
Significance (reduced χ2)



Estimator
Algorithm

Anatomy of fittodb (GADRAS)

MLR

Natural 
Library

MLR

Gain
Adjust

MLR

MLR

Weighted
Combine

MLR

Downsample

Medical 
Library

Industrial 
Library

SNM 
Library

Downsample Full
Library

Sample

SNM Fitness

Isotope ID

Background

Reduce to 62 
Energy Channels

Weights based on Fitness

PROPRIETARY143 Isotope/Shield Pairs



Other Techniques

One of these things are not like the others.



Shielding
Estimator 

Materials Basis Set

Purpose
Estimate the shielding located between a known nuclide and the 
detector.

Mathematically

Properties
Uses Beer’s Law (A=εlc) estimate shielding thickness
Works in a log space
Assumes that increased shielding decreases the mean counts in a 
channel
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Shielding
Estimator 

Materials Basis Set

Primary functions on the photo-peaks
Compton scatter breaks assumptions thus is biasing the solution

Working in a logarithmic space makes mixture analysis 
difficult.

Nuclide signatures add linearly
Complexity of estimator will increase as N2 as additional nuclides 
are included in the mixture
Perturbations from Compton Scattering likely to bias mixture 
solution

Assumes χ2 statistics on reconstructed spectra



Spectral
Enhancement 

Deconvolution

Purpose
Compute the energy flux at the surface of the detector from the 
observation

Properties
Requires relatively large numbers of counts to produce a quality
result (10k)
Requires extremely well tuned detector model
Removes virtually all detector effects

Compton Scatter
Backscatter peaks

Decreases the FWHM of the detector by a factor of 4
Allows isolation of peaks within ½ of the FWHM



Spectral
Enhancement 

NaI Deconvolution
• Deconvolution using EM algorithm 
• Allows direct evaluation of shielding from Compton scattering or

branching ratios
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original
deconv

• Removed backscatter 
peak

• Recovered Compton 
Scatter in the detector 
to the photo-peak

Simulated 1C 137Cs 
behind 3 cm of Pb



Spectral
Enhancement 

Plastic Deconvolution
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• Provides
• Peaks otherwise not visible 
can be identified

• Allows calibration of
energy scale

• Deconvolution using EM algorithm 
• 128 bin energy square root energy
• Gaussian basis 



Multi-detector Nuclide Comparison

Purpose
Uses multiple detectors to improve identification or match spectra 
between previous encounters

Properties
Simultaneously solve detectors by information sharing or summing
Depending on the number of energy channels used can operate 
with less counts at a particular encounter than possible otherwise
Demonstrated in DTS to improve nuclide identification for high 
speed traffic by using detections from multiple locations



Asymmetric Detector Nuclide 
Identification/Deconvolution

Purpose
Using two detectors with different resolutions and efficiencies to 
improve identification.

Properties
Simultaneously solves identification in both detectors by 
information sharing
Complexity increases at number of detectors squared
Pairs small high resolution (HPGe, SiLi, CZT) detector with larger 
low resolution detector (NaI, Plastic)
Creates hybrid detector with resolution and efficiency somewhere
between the two



Non-negative Iterative Solvers

NNLS - Lewson and Hanson
Logarithmic Barrier Function – method of generalized 
inequality constraints
Expectation Maximization – uses probability density 
function that are positive by design



Statistics

What do these silly numbers all mean?



Statistical
Definition

Model Confidence (Trust)

Purpose
Indicates how frequently a specified model is a correct 
identification.

Mathematics

Properties
Depends on immeasurable quantity P(M)
Requires the sum of all possible solutions that may not be 
computable in finite time.
At best we can compute a empirical estimate of confidence or 
psuedo-confidence
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Statistical
Definition

Nuclide Confidence

Purpose
Indicate how frequently a specified nuclide is a correct 
identification.

Mathematics

Properties
As with Model Confidence, depends on immeasurable quantities.  
Thus we can at best estimate it. 
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Statistical
Definition

Significance

Purpose
Indicates how frequently a similar observation may be produced 
from a model.

Mathematics

Properties
Evaluated by either a null hypothesis test (χ2) or by likelihood 
ratios.
Used as the objective function in estimators.
Well defined for radio-nuclide identification problem.
Controls the rate of Type II errors.
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