Algorithms for Fast, Robust Model-Based Polygon Detection

Siddharth Manay
CASIS 2006, 16-17 Nov.

UCRL-PRES-226096

Polygons in Images

- Need to search for objects in large images.
-Why Polygons?
- Polygons are useful general purpose descriptions of many different types of objects in images.
- Key design choices:
- In lit, polygons are often constructed from detected edges. We construct polygons from detected corners.
- We use models to allow user to constrain search.

Image courtesy of CA Spatial Information Library http:/larchive.casil.ucdavis.edu/casil/

Polygon Models Used to Constrain Search

- 3 Polygon models provide constraint/flexibility tradeoff.
- Choose the one that's right for the application.

Constrained

-Allows rotation and translation:

Manay-12/18/2006-3

Extracing Polygons: Overview

-Processing Pipeline:

Detect corners with GDM

-Corners are modeled as location, acuteness, and orientation.

- Gradient Direction Matching is used to extract corners in images:

Search and Evaluate match between image and model gradients

Corner Search

- Given a corner, a model, and the correspondence between the two, search for next corner is well constrained.
- Corner orientation/acuteness model allows fan or circle constraints:

Case I: no side length information.

1) Search fan region:

2) Search by orientation, acuteness:

Case II: side length information.

1) Search circle region:

2) Search by orientation, acuteness:

Grow corner trees

- Using polygon model constraints, connect corners into trees.

Start with one corner and model correspondence...

Using model, find next corner...

Model + first corner gives orientation, acuteness, and (maybe) position information for next vertex.

Continue CW until there are no more corners.

Trace CCW as well.

Extract Polygons

-Convert trees to Complete and Partial Polygons.

- Complete: polygon is closed.
- Partial: corners are missing.
-Paths in corner trees are possible (partial) polygons:

Evaluate Polygons

- Apply size, geometry filters.
- Min/max area, min/max perimeter, min/max side length, etc...
- Score based on geometric fit; discard if score is less than a threshold.
- Score based on corner angles:

$$
E_{\text {wvill }}=\frac{l}{n \pi} \sum_{k}\left|\alpha_{k}^{*}-\alpha_{k}\right|
$$

- Score based on side lengths (if applicable):

$$
E_{\text {wal } l i d e}=\frac{l}{n} \sum_{k}\left|\frac{l^{*} l_{k} l_{k}}{l_{0} l_{k}^{*}}-1\right| \quad E_{\text {abks side }}=\frac{1}{n} \sum_{k} \frac{\left[l^{*}-l_{k} \mid\right.}{l_{k}^{*}}
$$

- Score based on image data; rank based on score.
- Gradient direction score:

- Other measures could include region homogeneity, texture,...?

Evaluate Polygons

Disambiguate

- If polygons overlap, conflicts are resolved.
- Which polygon is more complete?
- Which has the stronger gradient direction score?

- If polygon is partial, we can still use it to identify the object.
-Reconstruction is also possible using model.

No-Side-Length Model Example

- "L"-shaped model
 with 6 corners only.
- Hits 1-10

No-Side-Length Model Example

-Hits 11-20

Absolute-Side-Length Model

- "L"-shaped model with 6 corners and side lengths.

S. Manay-12/18/2006-15

Polygon Model Matching

- Uses a family of flexible models.
- Choose model best suited to application.
- Detects corners using Gradient Direction Matching.
- Assembles corners into polygons.
- Assembly is constrained by the model.
- Corners are organized into corner trees.
- Robust to missing corners.
- Polygons are filtered based on match to model, other parameters.
-Polygons are scored using Gradient Direction for final ranking.

