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Introduction

The function to be optimized forms anN -dimensional space through
which the “particles” fly searching for the minimum

➤ Biologically based,ad hoc, mathematical description of swarm flight path;
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Introduction

The function to be optimized forms anN -dimensional space through
which the “particles” fly searching for the minimum

➤ Biologically based,ad hoc, mathematical description of swarm flight path;

➤ Random initial particle position and velocity;

➤ Random flight path perturbations during flight;

➤ Inter-particle communication of the swarm best (global) location;

➤ Competition between individual particle’s best location and swarm’s best

location;

➤ A bit of biomimicry.
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Particle Swarm Optimizer (PSO) Fundamentals
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Particle Swarm Optimizer (PSO) Fundamentals
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Particle Swarm Optimizer (PSO) Fundamentals

Particle best position

Swarm global best
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Particle Swarm Optimizer (PSO) Fundamentals
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Particle Swarm Optimizer (PSO) Fundamentals
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Particle Swarm Optimizer (PSO) Fundamentals

vn(t + 1) = φ(t)vn(t) + α1γ1n(t) [pn − xn(t)] + α2γ2n(t) [G − xn(t)] (1)

xn(t + 1) = xn(t) + vn(t) (2)

where
n is the particle number;
t is the time step;
xn(t) is the location of then-th particle at timet;
vn(t) is the velocity of then-th particle at timet;
φ(t) is the “inertia” function;
α1 & α2 are “acceleration” constants;
γ1n(t) & γ2n(t) are[0, 1] uniformly distributed random numbers;
pn is then-th particle’s best location;
G is the entire swarm’s best location

xn(t), vn(t), pn, andG areN -dimensional vectors
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Codes

➤ Seewww.mathworks.com user contributed codes;

➤ My flight.m

MATLAB example...
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Determine Frequency & Time Shift Of
Gaussian Windowed Sinusoid
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Parameters to be determined:

➤ Frequency,f0 = 2;

➤ Time Shift,t0 = 4;

➤ 20 dB SNR.

Signal
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Frequency & Time Shift Estimation Results

➤ PSO vs Gradient-based method (fminsearch);

➤ 5001 Monte Carlo runs;

➤ 20 dB SNR;

➤ Legend:

➥ Gradient-based method;

➥ 20 particles,

density of 0.14;

➥ 10 particles,

density of 0.07;

➥ 5 particles,

density of 0.03

➤ flight out performs

fminsearch...
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fminsearch Has Fewer Iterations & Function Calls
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Sample Flight Paths
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Conclusion

➤ If we had an infinite particle density, we could explore the space in one

iteration;

➤ Short of that, use a “handful” of particles and terminate theflight early using

the global best location as the initial guess for the gradient-based method.
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