Introduction to Particle Swarm Optimization

Sean K. Lehman

EE/ETD

Lawrence Livermore National Laboratory

November 17, 2006

CASIS Workshop November 16–17, 2006 UCRL-PRES-226157

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Next year: Who knows?

Introduction

The function to be optimized forms an N-dimensional space through which the "particles" fly searching for the minimum

► Biologically based, *ad hoc*, mathematical description of swarm flight path;

PSO

LLNL/EE/ETD

LLNL/EE/ETD

LLNL/EE/ETD

PSO

Particle Swarm Optimizer (PSO) Fundamentals

$$v_n(t+1) = \phi(t)v_n(t) + \alpha_1\gamma_{1n}(t) [p_n - x_n(t)] + \alpha_2\gamma_{2n}(t) [G - x_n(t)](1)$$

$$x_n(t+1) = x_n(t) + v_n(t)$$
(2)

where

n	is the particle number;
t	is the time step;
$x_n(t)$	is the location of the n -th particle at time t ;
$v_n(t)$	is the velocity of the n -th particle at time t ;
$\phi(t)$	is the "inertia" function;
$\alpha_1 \& \alpha_2$	are "acceleration" constants;
$\gamma_{1n}(t)$ & $\gamma_{2n}(t)$	are $[0, 1]$ uniformly distributed random numbers;
p_n	is the <i>n</i> -th particle's best location;
G	is the entire swarm's best location

 $x_n(t), v_n(t), p_n$, and G are N-dimensional vectors

SKL

fminsearch Has Fewer Iterations & Function Calls

Conclusion

- If we had an infinite particle density, we could explore the space in one iteration;
- Short of that, use a "handful" of particles and terminate the flight early using the global best location as the initial guess for the gradient-based method.