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A bit of biomimicry.
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Particle Swarm Optimizer (PSO) Fundamentals

Velocity of
n-th particle

U (t+ 1)
Tp(t+1)

Location of
n-th particle
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Particle Swarm Optimizer (PSO) Fundamentals

Inertia Function

Iteration Number

o1) vn (1)
T (1) 4+ vy (1)

Position update
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Particle Swarm Optimizer (PSO) Fundamentals

Particle best position

[P — Tn (1)) G — wp(t)]
Swarm global best
position

G — (1))

G
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Particle Swarm Optimizer (PSO) Fundamentals

P(t)vn(t) + a1v1n(t) [Pn — Tn(l)] + @2y2n(t) [G — zn(t)] (1)
Tp(t) + v, (1) (2)

IS the particle number;

IS the time step;

IS the location of then-th particle at time;

IS the velocity of then-th particle at time;

IS the “inertia” function;

are “acceleration” constants;

are[0, 1] uniformly distributed random numbers;
IS then-th particle’s best location;

IS the entire swarm'’s best location

v (t), pn, andG are N-dimensional vectors
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Codes

[1 Seewww. mat hwor ks. comuser contributed codes:

[ My flight.m
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Deter mine Frequency & Time Shift Of
Gaussian Windowed Sinusoid

Signal | log, {Error Surface)
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Parameters to be determined:
[ Frequencyf, = 2;

[0 Time Shift,ty = 4;
[0 20 dB SNR.
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Frequency & Time Shift Estimation Results

PSO vs Gradient-based methda{ nsear ch);
Frequency Histogram
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fm nsear ch Has Fewer Iterations & Function Calls

Iteration Histogram
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Sample Flight Paths

Flight Path Flight Path
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Conclusion

[1 If we had an infinite particle density, we could explore tha@pin one

iteration;

[1 Short of that, use a “handful” of particles and terminateftiggt early using
the global best location as the initial guess for the gradmased method.
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