**NIF Optics Inspection Analysis** 



Laura Mascio Kegelmeyer

### CASIS Signal and Imaging Workshop November 16-17, 2006

#### UCRL-PRES-226124

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Optics Inspection: Interdisciplinary effort merges engineering, computer science, physical optics theory, and customer interface



- Algorithms & Application Development: Steve Glenn, Judy Liebman
- FRODO TechBase: Anthony Azevedo, Mina Bionta, Barry Chen, Aseneth Lopez
- Summer Projects: Ketrina Yim, Jack Tzeng, Philip Fong, Dan Potter, John Pate
- Image Acquisition Software: Vicki Miller Kamm
- Physical Optics theory: Erlan Bliss and Thad Salmon
- Systems Engineering: Steve Azevedo, Scott Burkhart, Walter Ferguson
- Web, Java GUI Development: John Carlson, Stephanie Daveler
- Eng/Scientists/Customers: Jim Chang, Chris Choate, Alan Conder, Chris Haynam, Mike Nostrand, Tom Parham, Rahul Prasad, Mary Spaeth, Pam Whitman, Shot Directors and Control Room Operators.
- Support & feedback: testers, configuration management team, system administrators, database administrators

# NIF has thousands of optics on the beamlines which must be inspected after every shot





# On-beamline inspections can be like looking through a house of mirrors



- Focusing on clear glass can be tricky
- Images are relayed to camera through mirrors/periscope, spatial filters and other lenses and optics
- Must keep track of orientation



The LOIS inspection system for the Main Laser has mirrors, relay optics and intervening glass. Light scattering sites can still be detected



## In addition, every optic is inspected (off-beamline) before and after going on the beamline



A Y

- Verify manufacturing specifications
- Pass/Fail quality of coatings
- Confirm Conditioning
- Migitation
- Refurbishment



To track the evolution of a defect requires tracking a variety of conditions:

- Illumination settings
- Exposure times
- Operator-specific methods
- Orientation!



# Example of 1 (manufactured) defect imaged from online to offline inspections



SIDE (Online image of TCVW) -Check for damage exceeding 1 mm.

Portion of SIDE image (640x480) 1 mm / pixel

DMS-OPL (Damage Mapping System - Optics Processing Lab) -Confirm size and location of surface flaws - 97 microns per pixel

### CIM (Conditioning, Initiation & Mitigation)

-Test and condition the optic with increasing laser energies -Scattering sites smoothed (mitigated) with a CO2 laser



#### Micrographs

- Evaluate "true" size of flaws for calibration and validation - 6 microns per pixel



Micrograph / "Truth" Image = 1/16th full size 6 microns/pixel We may be able to find some defects by using their out-of-focus rings to estimate location and size -- FindingRingsOf Damage on Optics



Simulated images with 15 defects on different "optics"



FRODO (based on ICE GDM<sup>\*</sup>) was able to find diffraction rings on NIF Final Optics by tuning 4 adjustable parameters



\*Image Content Engine

Gradient Direction Matching

### APPSPACK<sup>\*</sup> optimized FRODO parameters; ReceiverOperatingCharacteristic curves provided performance metrics



\*APPSPACK (G Gray, T Kolda; Sandia, CA): derivative-free optimization software for solving nonlinear unconstrained and bound-constrained optimization problems, with possibly noisy and expensive objective functions.





A java-based visualization application allows users to view inspection results from a birds-eye view or in great detail



| OI Status<br>NIF Optics Inspecti<br>Home > Shots List SHOT SUI           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | User: Imascio                                            |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Shot Properties<br>Shot#: N061025-001-999<br>Date: 2006-10-25 11:46:28.0 | Summary By Optic Type   SE4   Cluster 1   B11 B12 B13 B14 B15 B16   B21 B22 B23 B2   B10 B14 B15 B16   B11 B12 B13 B14 B15 B16   B12 B12 B13 B14 B15 B16   B13 B14 B15 B16   B14 B15 B16   B14 B15 B16   B15 B16   B14 B15 B16   B15 B16   B14 B15 | Cluster 3<br>B31 B32 B33 B34 B35 B36                     |
|                                                                          | AL0611088-c1100-sf2_a-DARK, (id: 87331 serial: 210007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Beamline Ulumination Constraints for nissioning fiducial |

### OI Scaling to NIF: The amount of data storage will quickly become large

| Inspection Type        | lmages<br>per<br>dataset | Estimated<br>Image Size<br>(GB) | Size per<br>dataset (GB) | Anticipated<br>no.<br>datasets | Interval | Inspections<br>Per Month | Size per beam<br>per Month (GB) | Partial NIF Total<br>for one year<br>(GB) | Full NIF Total<br>for one year<br>(GB) * |
|------------------------|--------------------------|---------------------------------|--------------------------|--------------------------------|----------|--------------------------|---------------------------------|-------------------------------------------|------------------------------------------|
| FODI                   | 16                       | 0.032                           | 0.512                    | 1                              | per day  | 20                       | 10.24                           | 983.0                                     | 23,593.0                                 |
| NODI                   | 16                       | 0.032                           | 0.512                    | 0                              | per week | 0                        | 0.00                            | 0.0                                       | 0.0                                      |
| PODI                   | 16                       | 0.032                           | 0.512                    | 1                              | per week | 4                        | 2.05                            | 24.6                                      | 24.6                                     |
| SIDE                   | 4                        | 0.000                           | 0.001                    | 1                              | per shot | 20                       | 0.02                            | 2.2                                       | 52.7                                     |
| LOIS                   | 58                       | 0.001                           | 0.057                    | 2                              | per week | 8                        | 0.91                            | 87.0                                      | 2,088.0                                  |
| Sub-LOIS (SF3, SF4)    | 10                       | 0.001                           | 0.010                    | 1                              | per shot | 20                       | 0.20                            | 18.8                                      | 450.0                                    |
| OPL (DMS maps)+ FADLib | 2                        | 0.032                           | 0.064                    | 500                            | per year | n/a                      | n/a                             | 32.0                                      | 32.0                                     |
| CIM                    | 12                       | 0.032                           | 0.384                    | 250                            | per year | n/a                      | n/a                             | 96.0                                      | 96.0                                     |
| PSDI                   |                          |                                 | 0.100                    | 350                            | per year | n/a                      | n/a                             | 35.0                                      | 35.0                                     |
| IMS                    | 18                       | 0.073                           | 1.318                    | 250                            | per year | n/a                      | n/a                             | 329.6                                     | 329.6                                    |
| Calib (micrographs)    | 10                       | 0.001                           | 0.010                    | 45                             | per year | n/a                      | n/a                             | 0.4                                       | 0.4                                      |
| Total Storage Needed   |                          |                                 |                          |                                |          |                          |                                 | 1,608.6                                   | 26,701.3                                 |

\* Size estimates are for early NIF (FY '09 - FY '10)

#### Summary

- 27 TBytes/year (50 if full FODI) ~6000 DVD's
- NIF Ops (/nif) has ~6 TByte now

On-line

Off-line

- 300 GB drives are \$300 now (Maxtor) or \$1/GB
- Archival plans are being made with NIF IT



OI Analysis supports on-beamline inspections for shot readiness and optics recycling as well as off-beamline for QA, conditioning, validation...

- Automated inspection for images from 9 camera systems on the NIF beamline and 11 offline. (One fundamental algorithm to analyze them all.)
- Track defects on thousands of optics through their lifetime (across different camera systems). Detect and measure defects over a range of sizes to assure quality performance and safety.
- We can keep up with speed requirements by expanding our Linux cluster for parallel analysis of all on-beamline and offline systems.
- Image analysis runs on an application server and all images and results are stored in a database.
- Java-based visualization application can be downloaded from any browser. It allows each customer to review results appropriately via dynamic database queries.



Phil Fong

Alan Conder Judy Liebman

Steve Glenn