

Virtual Geographic Routing

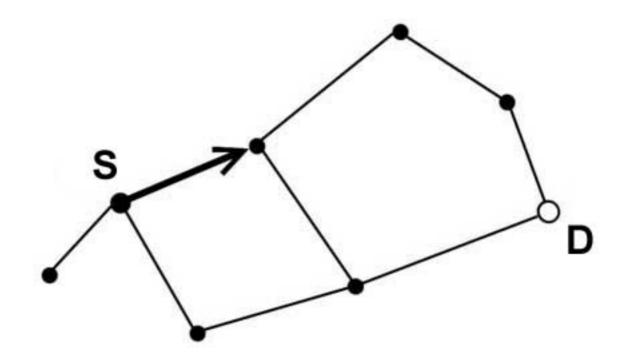
Michael E. Goldsby Michael M. Johnson Sandia National Laboratories/California

David M. Nicol University of Chicago at Urbana-Champaign

November 16, 2006

2006-10-18 : **1**

Virtual Geographic Routing

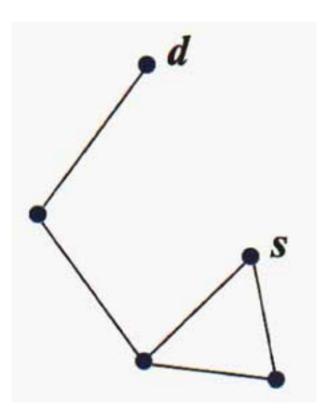

- Virtual Geographic Routing (VGR) is an ad hoc routing protocol that is scalable to massive numbers of nodes.
- VGR does geographic routing using virtual coordinates in Kdimensional space.

Geographic Routing

• At every hop, the message is forwarded to a neighboring node that is closer to the destination

Geographic Routing

- Advantage: Geographic routine (GR) requires only a small fixed amount of routing information at each node, so is massively scalable
- Disadvantage: Nodes must know their locations in space
 - Typically requires GPS units, which increase the size, weight, cost and power consumption of the nodes and do not function in all environments

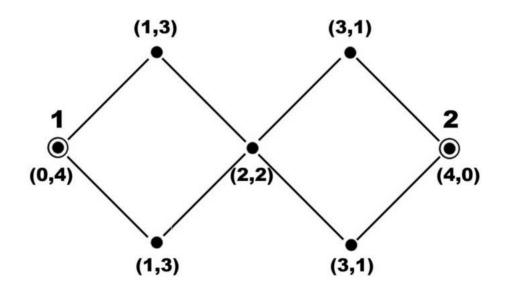

VGR

- VGR replaces x,y spatial coordinates with K virtual coordinate developed using only connectivity information
- The virtual coordinates are the number of the hops from K anchor nodes
 - Anchors may be self-selected or set a priori
- Virtual coordinates developed using algorithm similar to distributed Bellman-Ford
- The geographic routing algorithm works with virtual coordinates
 - Various distance metrics may be used: Euclidean works well

Failures of Geographic Routing

• Geographic routing fails when it encounters a local minimum of the distance function (also called a *void, hole* or *lake*).

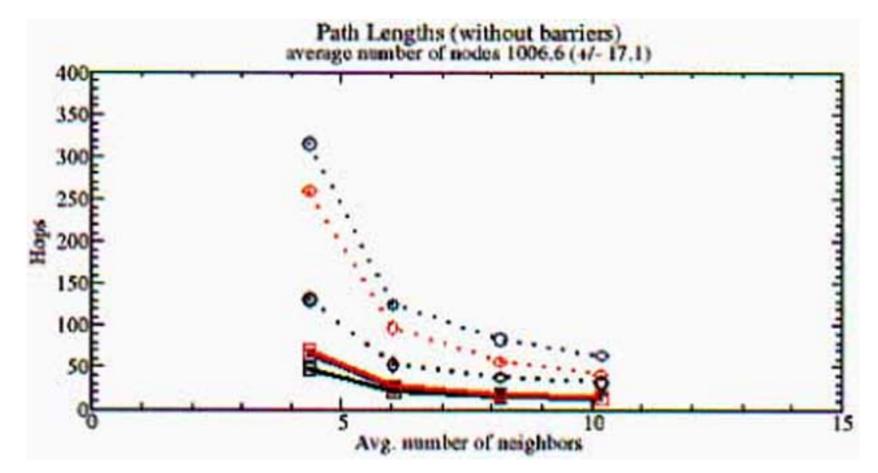
Dealing with Voids


- Perimeter routing
 - Derive planar subgraph and use the right-hand rule
 - Only works for unit graphs and in two dimensions
 - Real networks don't tend to be unit graphs
 - We require more than two dimensions for good routing in VGR
- Expanding ring search
 - Search for node closer to the destination than the current node and use it as an intermediate destination
 - Cache the result to cut down network overhead

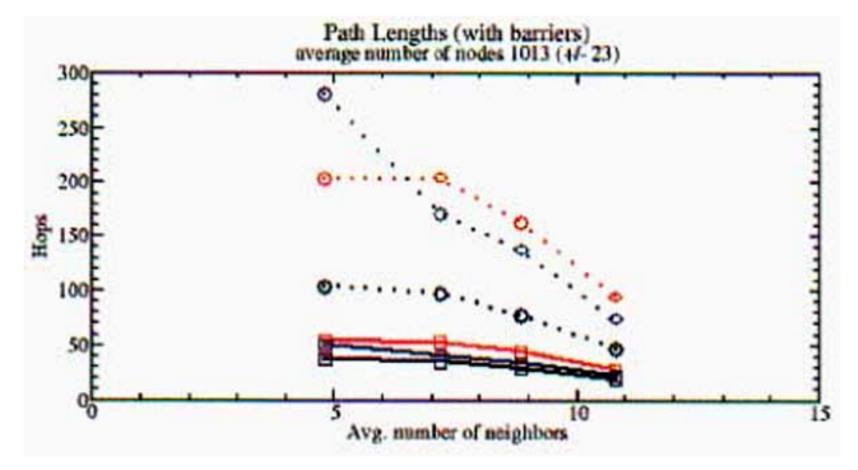
Aliasing

• Different VGR nodes can have the same virtual coordinates

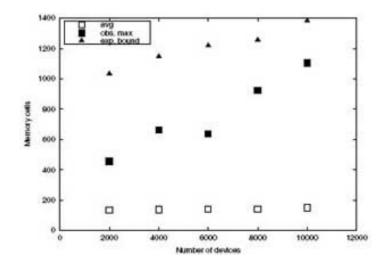
• We also use an expanding ring search to learn the path from an aliased node to the destination and cache the result


Performance

- Performance data were gathered using simulation on random node layouts in two dimensions
 - Simulated up to 10000 nodes
- The performance of VGR is comparable to that of "real" GR and has much lower overhead in the presence of obstacles
- Neither RGR nor VGR develops shortest paths, but the average path length approaches the shortest path length as the average node degree increases

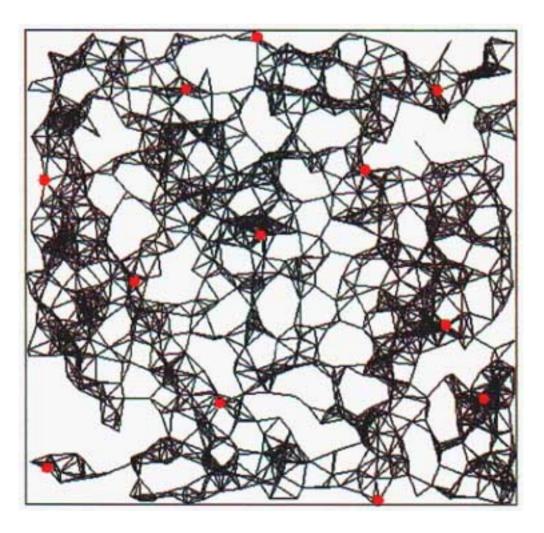

Performance (2)

Performance (3)



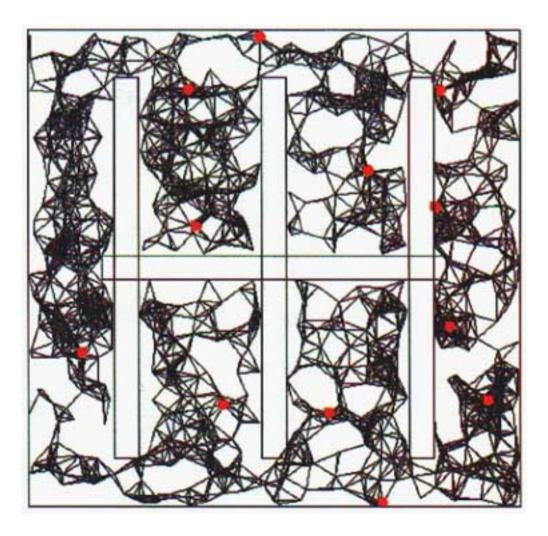
Performance (4)

- The important scalability metric is the amount of local storage used for routing information at each node
- As the average node degree rises above about 8, the average local storage requirement levels off, and the expected maximum local storage requirement is bounded logarithmically in the network size.


Performance (5)

- In the presence of obstacles, RGR is much more susceptible to voids than VGR
 - RGR expends a much greater proportion of its hops on routing around voids than VGR when obstacles are present

No Barriers				With Barriers		
	GR	VGR	GR/VGR	GR	VGR	GR/VGR
fraction geo. hops	0.95	0.93	1.02	0.66	0.90	0.73
ratio search hops / total hops	0.0034	0.0030	1.13	0.778	0.046	17
max/average flood radius	8.4/2.66	8.5/2.28	0.99/1.16	40.5/4.7	14.3/2.76	2.83/1.70
max/average hops to alias	_	2.3/0.99	_	-	16.6/3.56	. <u> </u>



1016-Node Graph 12 Anchors, Average Node Degree 9.3

1024-Node Graph With Barriers 12 Anchors, Average Node Degree 9.9

Other Work

- "Geographic routing without location information," Rao, Ratnasamy, Papadimitriou, Shenker and Stoica, *MobiCom*, 2003.
 - Develops 2- or 3-dimensional spatial coordinates using only connectivity information.
 - Their approach is more complicated than ours, using 2 or 3 fixed beacons and requiring all nodes to learn the internode distance between each pair of perimeter nodes.

Other Work (2)

- "Localization from mere connectivity," Shang, Rumi, Zhang and Fromherz, *MobiCom*, 2003.
 - Develops 2- or 3-dimensional spatial coordinates using a centralized algorithm
 - The coordinates are not used for routing
- "Geographic routing in hyperbolic space," Kleinberg, *slides available on Web,* 2006.

References

- "Simulation Analysis of Virtual Geographic Routing," Nicol, Goldsby and Johnson, *WinterSim*, 2004.
- Robust Message Routing for Mobile Ad Hoc (Wireless) Networks, Goldsby, Tsang, Johnson, Chen, Bierbaum and Ammerlahn, SAND2003-8762.

